

Publication Details

Towards Electric Mobility in East Africa

Current Trends and Policy Approaches

ANALYSIS

PUBLISHED BY

Agora Verkehrswende

Agora Transport Transformation gGmbH Anna-Louisa-Karsch-Str. 2 | 10178 Berlin www.agora-verkehrswende.org info@agora-verkehrswende.de

PROJECT MANAGEMENT

Naville Geiriseb naville.geiriseb@agora-verkehrswende.de

Johannes Oetjen johannes.oetjen@agora-verkehrswende.de

IMPLEMENTATION

Authors

Naville Geiriseb, Herman Kwoba (GIZ), Johannes Oetjen, Byencit Duncan

Please note that maps used in this publication serve illustrative purposes only. Boundaries and names shown follow the United Nation's definition of recognised territories under international law. Their use does not imply endorsement or acceptance by the authors or authors' organisations.

Translation/Proofreading: Lucais Sewell Layout: Urs Karcher Cover image: Roam Electric

Version 1.0

Publication: December 2025

139-2025-EN

REPORT BACKGROUND

This report was prepared by Agora Verkehrswende in collaboration with GIZ Kenya as part of the Rethinking Transport project, jointly implemented by Agora Verkehrswende and Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ).

ACKNOWLEDGEMENTS

The authors would like to thank the external reviewers Annika Berlin (UNEP), Edna Mercy (UN-Habitat), Paschal Giki (Enable Tanzania), and Warren Ondanje (AfEMA) for their valuable inputs.

The authors also express their gratitude to all further African experts that were consulted for their knowledge-able contributions and insights regarding EV sector and policy developments in African countries.

Please cite as:

Agora Verkehrswende (2025): Towards Electric Mobility in East Africa. Current Trends and Policy Approaches.

www.agora-verkehrswende.org

Preface

Dear readers.

Electric mobility has gained recognition amongst policy-makers in Africa as a key path towards climate-neutral transport and industry across the continent. Indeed, electric mobility presents an opportunity for Africa to advance its industrialisation goals and climate ambitions, by building new industries, creating jobs, reducing greenhouse gas emissions, and improving urban air quality.

Today, the decarbonisation of transport in Africa is mostly focused on the transition to sustainable forms of mobility. Countries have been investing in the improvement of infrastructure, public transport services, and non-motorised transport, as 40-60 percent of Africans walk or use informal public transport. However, the economic benefits of electric mobility are quickly attracting additional investments. Expensive imported fuels together with cheap electricity from renewables have created favourable economic conditions for EV market growth. Local EV assembly plants are already operating in Ethiopia, Ghana, Kenya, Nigeria, and Tanzania. Currently, some 21 African countries are developing or have adopted so called EV Policies to develop the sector. Already one third of the countries on the continent is moving towards electric mobility.

As the phenomenon of the "global car" becomes a thing of the past amidst changes in geopolitics and automotive value chains, African nations have an opportunity to build their own EV industries and supply networks. The conditions are auspicious. For one, investment in the production of internal combustion engine vehicles and supply chains is already low in all African countries (with the exception of Morocco and South Africa). For another, EV drivetrain technology is comparably less complicated, while mineral and renewable resources are abundant. Finally, Africa's young population is expanding, while the middle class continues to grow.

All in all, Africa has the chance to become a key player in the future global EV industry. Experience in other regions of the world has shown that the automotive industries are built in regional clusters with specialised value chains distributed across countries. At the moment, East Africa is the pioneer for electric mobility in Africa. Nearly 150,000 EVs, mostly motorcycles, are on the roads of Ethiopia, Kenya, Rwanda, Tanzania and Uganda.

Ethiopia by far has the largest fleet, representing some 80% of electric vehicles in the region. Ethiopia, Rwanda, and Uganda have already adopted EV policies, while Kenya and Tanzania have draft policies under review. Moreover, four out of these five countries are members of the East Africa Community (EAC), an important organisation for reducing barriers to free trade in parts and components.

This paper provides an overview of EV market trends and policy developments in these five leading East African countries. While assessing the policies in each country, we consider outstanding challenges in the area of EV lifecycles. We also make suggestions for future policies that are robust to ongoing developments in the global EV market. Our assessment is meant to serve as a stimulus for further discussions with policymakers in the rest of Africa as they develop their own sector roadmaps. Governments across the continent would reap considerable benefits by developing future-oriented policy frameworks that promote EV adoption while also considering the entire EV lifecycle. We hope you find this publication both useful and informative – and valuable as a catalyst for further discussion.

With best regards on behalf of the Agora Verkehrswende team,

Christian Hochfeld

Executive Director of Agora Verkehrswende Berlin, December 2025

Key takeaways

- Electric mobility continues to advance in African countries, with East Africa emerging as the continent's pioneering region. At least 21 African countries have adopted or are developing electric mobility policies. Among them, five East African countries Ethiopia, Kenya, Rwanda, Tanzania, and Uganda are the most advanced group on the continent. With a strong political commitment to electric mobility and motorisation rates averaging under 30 vehicles per 1,000 people, these countries will see strong growth in vehicle numbers in coming years and have the opportunity to leapfrog directly to electric mobility. Electric vehicle (EV) adoption has been low so far but is rising quickly with the launch of local assembly plants, particularly for two-wheelers and minibuses.
- Industrial development goals, rising economic prosperity, and climate action are the main drivers of the trend towards electric mobility. The five countries considered in this analysis view this global momentum as an opportunity for economic growth, the development of domestic value chains, and new jobs. Ethiopia emerged as an early mover, after it began to promote electric mobility at the national policy level in the early 2010s. The policies being pursued by these countries have evolved dramatically in terms of ambition and feasibility since 2020. Nevertheless, national approaches diverge significantly. Ethiopia has banned the import of internal combustion engine (ICE) vehicles; Uganda is emphasising local manufacturing supported by a state-owned EV automaker, Kiira motors; and Rwanda, with its relatively low motorisation rate, is prioritising the electrification of two-wheelers and buses.
- Africa's resource advantages need strategic integration into EV policies. In the five East African sample countries, limited information is available on domestic reserves of raw materials critical for electric mobility. Only Ethiopia has prioritised measures to map and integrate raw materials into domestic EV production. Aligning with the AU's African Green Minerals Strategy (AGMS) and strengthening the circular economy will be key for maximising long-term value creation while reducing dependency on new raw material inputs. To further close the raw materials loop, future EV policies should include comprehensive end-of-life planning for batteries and vehicles. A full EV lifecycle approach will ensure sustainability, efficiency, and environmental resilience.
- Long-term policy certainty and regional coordination are crucial to accelerating and scaling initial achievements. Governments in the region are setting ambitious EV goals, but their progress has been limited by incomplete national policy frameworks, gaps in institutional coordination, and uncertain fiscal incentives often tied to short-term budget cycles. Greater regional coordination will help to drive economies of scale and industrial specialisation while also bolstering investor confidence. Indeed, coordinated action across the domains of policy, standards, infrastructure, and market development will be essential to create a resilient and scalable EV ecosystem in the region.
- International collaboration and joint investment projects can help to build resilient EV value chains.

 Although many companies are already active in East African nations today in the area of semi and complete knock-down assembly operations for two and three-wheelers and to a lesser extent in the area of bus assembly, there is limited technological and financial capacity to scale. These operations have demonstrated proof of concept, but significant barriers, such as limited access to affordable financing, technology, and skilled labour, continue to hinder further growth. Cooperation and partnerships with EU member countries such as Germany could help to bridge the financing gap while enabling the transfer of the technology and skills required to build capacities for domestic EV manufacturing and market development.

Contents

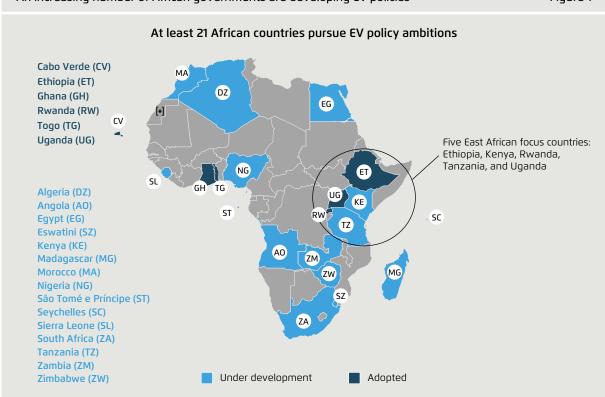
Preface	3
Key takeaways	4
Contents	5
1 Electric mobility adoption in Africa	7
 2 Vehicle fleets, climate ambitions, and electric mobility trends in East Africa 2.1 National vehicle fleets are relatively small but expanding 2.2 Electric vehicle automotive assembly in the region is a priority 2.3 Variation in climate policy and mitigation targets in transport 2.4 Ambition in e-mobility targets is promising 2.5 Despite high renewable shares, charging infrastructure development is lagging 	9 10 11 13
3.1 EV policy assessment framework 3.2 Assessing East African EV policies 3.3 Summary of prospective policies	17 17 19 32
4 Outlook: advancing regional cooperation and a continental framework for electric mobility	33
5 Poforoscos	21

Agora Verkehrswende | Towards Electric Mobility in East Africa

1 | Electric mobility adoption in Africa

Electric mobility has gained traction on the African continent over the past decade. African nations have recognised the benefits of electrifying transport for the environment, human health, and economic growth. The displacement of fuel imports is a further driver of EV adoption in the region. The share of spending on fuel imports for transport ranges from 2 percent of GDP (in Ethiopia) to 5 percent of GDP (in Tanzania), despite low motorisation levels.¹ The number of vehicles in Africa is predicted to more than double by 2040.² The electrification of road transport could thus be a major win as it can reduce high import bills and foreign currency outflow.

At least 21 African countries have undertaken strategies to accelerate EV adoption. While such strategies often fall under the blanket term "EV policy", they actually consist


- 1 Agora Verkehrswende. (2025)
- 2 McKinsey. (2022)

of a variety of policy instruments. Ethiopia, Morocco, and South Africa are among the leaders in Africa on electric passenger car sales, although data remains limited and each country uses a different definition for what is included under EV sales.³ Senegal has introduced the first fully electric powered Bus Rapid Transit (BRT) system, while Kenya, Tanzania, and Uganda have growing start-up ecosystems with rapidly growing two and three-wheeler electric fleets. Kenya and Uganda have invested in assembly plants for mainly larger 10m and 12m electric buses.⁴

- 3 Thabo Nkosi. (2025).; Ministry of Water and Energy (MoWE) et al. (2025); BMI Country Risk and Industry Analysis. (2025)
- 4 Roychowdhury et al. (2023).

An increasing number of African governments are developing EV policies

Figure 1

Agora Verkehrswende (2025) | Please note that maps used in this publication are for illustrative purposes only. The boundaries and names displayed follow the UN's definition of recognized territories under international law. Their use does not imply endorsement or acceptance. *Disputed territory.

Africa is at a unique juncture, for it can shift its vehicle growth trajectory across segments from internal combustion engine (ICE) vehicles to domestically produced electric vehicles, thus leapfrogging the age of combustion-powered mass motorisation. The African automotive market is currently dominated by used-ICE vehicle imports, which make up as much as 80 to 90 percent of the vehicle stock in countries such as Kenya and Nigeria.⁵ Hence, domestic production in most African countries is limited. South Africa and Morocco are an exception. Their automotive industries are significant and make up a high share of production for export.6 Governments across the continent are favouring "produce locally, sell locally" strategies aimed at transitioning from assembly plants and used-vehicle imports to full-scale manufacturing. Their goal is to build domestic parts industries, generate employment, and conserve foreign currency.7 The key to this transition is to implement policies that limit used vehicle imports, create preferential tax incentives, adopt supportive industrial frameworks, ensure adequate market size, provide stable and affordable electricity, and build technical capacity. Some governments, including Egypt and South Africa, have introduced bans on used vehicle imports to support local industries. In countries such as Algeria, Ethiopia, Ghana, Kenya, Nigeria, Rwanda, a shift towards local vehicle production is taking place, with the emergence of assembly plants for semi-knock-down (SKD) and completeknock-down (CKD) vehicle kits.

East Africa is leading the way in Africa's electric mobility adoption. Ethiopia, Kenya, Rwanda, Tanzania, and Uganda are among the leading countries of EV adoption in Africa. All of these countries have adopted or are currently developing national EV policies or strategies. Significant investment has been channelled to the region's automotive assembly industry: start-ups assembling two and three-wheelers and buses in Kenya; the manufacturing hub for four-wheelers and buses in Uganda; the assembly of heavy and light-duty vehicles in Tanzania; the assembly of two and three-wheelers and buses in Rwanda; and the assembly of electric passenger cars in Ethiopia. The energy sector is critical to the adoption of EVs, as it determines ease-of-use (i.e. the availability of charging infrastructure) and operational cost advantages (i.e. the price difference between electricity and combustion fuels). The five East African nations have vast renewal energy capacities and, except for Tanzania, already have a renewable energy share in power generation above 50 percent (see section 2.5, Table 4). Through the adoption of comprehensive EV policy frameworks and close regional cooperation, the East African nations have a unique opportunity to leverage economies of scale and establish a strong regional market, which has the potential to attract significant global investments throughout the EV value chain. Indeed, East Africa could become a blueprint for other African regions seeking to scale up EV adoption.

The following section focuses on the status-quo situation and policy ambitions in Ethiopia, Kenya, Rwanda, Tanzania, and Uganda (section 2). In section 3, the policy frameworks of these countries are analysed based on an assessment framework developed by Agora Verkehrswende. Section 4 provides a conclusion and outlook based on the analysis conducted in the previous sections.

⁵ Deloitte. (2016).

⁶ AFDB. (2017).

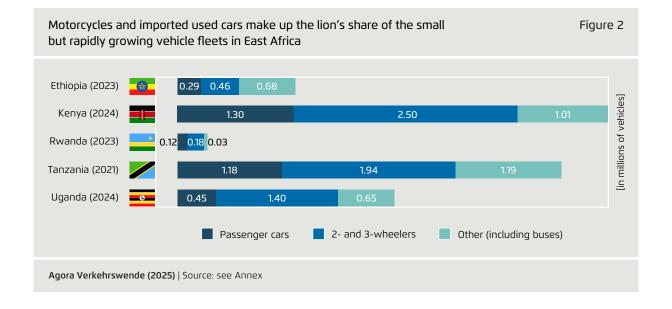
⁷ African Business. (2024).

2 | Vehicle fleets, climate ambitions, and electric mobility trends in East Africa

This section provides an overview of the current state of vehicle fleets in East Africa, its progress toward electrification, and the sectoral mitigation targets of East African countries

2.1 National vehicle fleets are relatively small but expanding

Private car ownership remains low in the five East African countries. These countries have an average motorisation rate of less than 30 vehicles per 1,000 inhabitants, which is below the Africa average (51 per 1,000 inhabitants) and a fraction of the global motorisation rate (219 per 1,000 inhabitants). Until a decade ago, Ethiopia was considered to be the country in the world with the least vehicles relative to the size of its population, at two vehicles per 1,000 inhabitants, a number which has since sharply increased to 14 vehicles per 1,000 Inhabitants. The majority of vehicles in circulation in East Africa are imported. Most imports hail from Japan and Europe; a smaller share comes from South Korea. Kenya, Tanzania, and Uganda have left-hand traffic, favouring right-hand-drive vehicle imports from Japan and the UK. The


- 8 Slocat (2025), four-wheelers only.
- 9 Align Insights. (2024).
- 10 UNEP. (2024).

countries all have vehicle import restrictions, although the stringency of their enforcement varies greatly.

There is no reliable, publicly available estimate of the average age of vehicles in these countries. Some estimates suggest an average fleet age of over 15 years, ranging from up to 25 years in Ethiopia and Uganda to as low as 10 years in Kenya. Besides age restrictions, a major driver of vehicle-fleet age differences has been vehicle taxation structures and differences in purchasing power.

Motorisation rate is highest in Kenya, making the country a central market for automotive growth in the region. Ethiopia, although Africa's second most populous country, has a comparably small vehicle fleet. The automotive market is very dynamic in East Africa, which means that the availability of the latest data is a crucial factor. In Ethiopia, Rwanda, and Tanzania, the latest available data are two or more years old, while annual vehicle growth rates are around 10 to 15 percent. 12

- Deloitte. (2016).; Kebede, A. (2021). Crowe et al. (2025), the most recent study involving a field-work survey, found an average age of vehicles on Kampala's streets ranging from 4 years (motorcycles) to 19 years (passenger cars and buses) and 26 years for heavy-duty vehicles.
- 12 Federal Democratic Republic of Ethiopia Ministry of Transport and Logistics. (2022); National Institute of

Two and three-wheelers make up the largest vehicle segment in at least four of the five countries. These much lighter and smaller vehicles consume much less energy and thus have lower requirements for battery size – thus allowing battery swapping while requiring lower upfront investment. Lower energy consumption and lower storage capacity needs also reduce requirements for battery density and charging capacity, furthering simplifying market uptake and reducing costs.

The availability of national electric vehicle fleet data is critical to ease market entry and strengthen the business case for industry and investors. EV adoption is nearly impossible to track precisely due to the absence of systematic data collection. Kenya identifies its EV vehicle fleet share (across all segments) in its annual economic survey reports, while Rwanda regularly reports this figure in relevant policy documents. For Ethiopia, Uganda, and Tanzania, however, this information is not readily available.

Operational cost savings from the commercial use of EVs is the key driver of ongoing EV uptake in the region.

With regards to electric vehicle uptake, Ethiopia is making unprecedented progress, particularly in the category of electric passenger cars. Tanzania is a regional leader in the two- and three-wheeler category. Kenya is actively attracting investments in the sector, while Uganda is intentionally setting itself up to be an electric bus supplier in the region. Rwanda is supporting uptake through incentives as well as through policy guidance.

Kenya has an estimated 9,000 electric vehicles (based on data from 2024), with a major share of this being electric motorcycles. The total number of electric vehicles in the country has more than doubled since 2023. Electric motorcycles make up 90 percent of the EV fleet in the country. The country has set a target of making at least 5 percent of its annual registered passenger vehicle fleet electric by 2025. By comparison, Tanzania has about 10,000 electric two- and three-wheelers and only about 30 electric four-wheelers in its fleet. As of 2024, Rwanda had some 500 pure electric four-wheelers and 5,000

Statistics of Rwanda (NISR). (2024).; Tanzania: undisclosed draft document from the Ministry of Transport(n.d.)

13 Electric Mobility Association of Kenya (EMAK). (2025).

electric motorcycles in operation. ¹⁴ Since January 2025, Rwanda no longer allows the registration of gasoline-powered motorcycle taxis in Kigali. The much larger Uganda has deployed 24 locally manufactured electric buses and over 3,000 electric motorcycles. ¹⁵ Ethiopia boasts the largest electric vehicle fleet in the region at 115,000, as of 2025. ¹⁶ In 2024, electric vehicles accounted for 60 percent of new vehicle registrations. At the same time, the country boast the greatest near-term ambition in the uptake of EVs by 2030 (see table 3). ¹⁸

2.2 Electric vehicle automotive assembly in the region is a priority

Electric vehicles are an opportunity to localise automotive manufacturing in African countries. Battery-electric vehicle assembly is less labour intensive than ICE manufacturing, has less complex drivetrain technology, and requires fewer components. Truther, considering that Africa holds 30 percent of the world's reserve of minerals critical for battery production, such as cobalt, lithium, and nickel, taking advantage of such value chains is crucial. The automotive manufacturing sector in the East African region shows significant progress, but also the need for further investment and intentional cooperation. A major part of value creation lies in battery production, which is capital-intensive, innovation driven, and dominated by a small number of global players.

East Africa has renewed its focus on local manufacturing with the goal of job creation, particularly for its young and expanding working age population. The nascent African automotive industry stands to gain immense opportunities for market expansion and accelerated industrialisation through regional value chains and improved intra-African trade, particularly through the Africa Continental Free Trade Area (AfCFTA) agreement. The AfCFTA aims to eliminate trade barriers and boost intra-African trade, creating the world's

- 14 Changing Transport. (2024)
- 15 Sharp Mugabe. (2019).
- 16 Ethiopia E-Mobility strategy And Implementation Plan. (2025).
- 17 McKinsey Center for Future Mobility 2019
- 18 Elhiraika A. (2025)

largest free trade area that encompasses the 55 countries of the African Union (AU) and the eight Regional Economic Communities (RECs). The AfCFTA will be critical in expanding the market for locally produced vehicles, especially when it comes to harmonised continental standards and increased local content threshold.

Kenya's three major assemblers, Isuzu East Africa (IEA), the Associated Vehicle Assemblers Ltd (AVA), and the Kenya Vehicle Manufacturers (KVM), have a combined annual assembly capacity of 46,000 units. 19 According to the e-mobility start-up BasiGo, the demand for domestically assembled electric buses is higher than current production capacity. Uganda has a thriving vehicle assembly industry that is both ambitious and visibly prioritised by the current government. In 2022, Uganda commissioned the Kiira Motors vehicle plant, which is arguably one of East Africa's most prominent vehicle assembly facilities. Kiira Motors is currently focusing on the production of electric buses and electric vehicle chargers for the regional market. The plant has an installed capacity of 2,500 vehicles per year.²⁰ In 2020, Uganda issued a ban on the import of fully built buses, a move meant to boost the domestic automotive industry.

Ethiopia's domestic assembly market is developing fast, with over 20 assembly plants already operating in the country. Most of them perform semi-knockeddown (SKD) assembly, with plans to move to completeknocked-down kits in the short term. A 2024 ban on the import and assembly of internal combustion engine vehicles in the country means that Ethiopia is gearing up for the enhanced local production of its electric fleet. For example, in April 2025, 100 locally assembled electric buses were deployed by private companies in Addis Ababa.21 The country has an annual EV assembly capacity of around 84,000 vehicles. 18 Furthermore, Ethiopia intends to explore battery production and is in an early stage of exploring its lithium-ion deposits. In Rwanda, an SKD-based assembly plant was set up by Volkswagen in 2018 and is the primary vehicle assembly plant in the country. The nascent African automotive industry stands to gain immense opportunities for market expansion and accelerated industrialisation through regional value

19 Kenya Association of Manufacturers (KAM). (2020).

chains and improved intra-African trade, particularly through the Africa Continental Free Trade Area (AfCFTA) agreement. The facility has a production capacity of 5,000 units annually, to which Volkswagen has explored the introduction of electric vehicles.²²

Tanzania's automotive production sector is focused on light and heavy commercial trucks. The two most prominent companies, Saturn Corporation and GFA assemblers, both produce different categories of trucks for the domestic market. The country also set up the Tanzania Automotive Technology Centre, whose primary objective is to advance technological innovation. The centre is reported to have produced locally assembled military vehicles. Another notable local player is Kaypee Motors, which manufactures light-duty trucks mainly for lastmile urban logistics. Numbers on production capacity are not available.

The electric vehicle sector in the East African region shows significant progress, but there is a clear need for further investment and targeted policy support. In the future, localising battery production (assembly in the near term) could become an opportunity for value creation, however it remains conditioned upon on enabling policy support, building domestic manufacturing capacities and private sector investment.

2.3 Variation in climate policy and mitigation targets in transport

All countries considered in our analysis cite the electrification of road transport as a lever for mitigation in their Nationally Determined Contributions (NDCs). In their respective NDCs and national climate plans, all five countries have laid out GHG emission reduction targets, although of different ambition, scope, and time horizons (see Table 1). Rwanda and Uganda are the only countries having laid out a specific GHG emission reduction target from the adoption of electric vehicles – representing close to a third of total transport emissions in a business-as-usual scenario by 2035 in Rwanda and a quarter of transport emissions by 2040 in Uganda. ²³ Further, Kenya and Rwanda also have sector-specific GHG

²⁰ Sharp Mugabe. (2019).

²¹ Alematehu, D. (2025).

²² Irechukwu, E. N. (2025).

²³ Republic of Rwanda. (2025)

GHG emission reduction targets in transport (and beyond)

Table 1

Country	2030	2035	2040
Ethiopia	–11.1 Mt CO₂eq (–43%) in energy (NDC 2025)	–20.8 Mt CO₂eq (–60%) in energy (NDC 2025)	ca. –3.5 Mt CO₂eq (–16%) in energy (2023)*
Kenya T	By 2028: −3.1 Mt CO₂eq in transport (2023)	–75.25 Mt CO₂eq (–35%) economy-wide (NDC 2025)	-
Rwanda	–0.14 Mt CO₂eq (–2%) in energy (NDC 2020)	–1.98 Mt CO₂eq through BEV adoption (NDC 2025)	-
Tanzania	–30–35% economy-wide (NDC 2021)	-	-
Uganda 🚤	–2.8 Mt CO₂eq (–29%) in transport (NDC 2022)	-	–25% in transport from BEV adoption (2023)

Agora Verkehrswende (2025) Source: see annex. All targets relative to BAU. In parentheses: year the target was announced. *Ethiopia recently published an NDC with a much greater ambition than previous documents. However, targets going beyond 2035 have not been updated in the process.

emission reduction targets for transport, while Ethiopia and Uganda compare their targets relative to energy GHG emissions and total GHG emissions respectively. ²⁴ So far, Tanzania and Uganda are yet to submit their third round NDC. The recent submissions of Ethiopia and Rwanda have demonstrated two facts: first, a leap in ambition. Ethiopia, has increased its target drastically from –16 percent by 2040 to –60 percent by 2035 in just two years between the submission of its Long–Term Low Emission and Climate Resilient Development Strategy (LT–LEDS) in 2023 and its NDC 3.0 in 2025. Second, an incomplete alignment of targets between different policy documents. For example, Ethiopia has a more ambitious target for both 2030 and 2035 than 2040. ²⁵

The difficulty of presicely estimating funding needs remains, especially because the technology itself is rapidly evolving. Most prominently, the cost of batteries has fallen by more than 80 percent in a decade.²⁶

Few countries have provided detailed estimates of financial needs in terms of mitigation technology and action. Rwanda has been the only country to quantify the sum of (public) investment needed for the uptake of e-mobility (see Table 2). In its NDC, Rwanda lists vehicle

electrification as one of the measures for which the realisation is conditioned on international financial support (conditional target), with costs estimated at USD 418 million. Across the five countries, domestic spending pledges relative to GDP appear minor, with only Ethiopia committing to spending more than a cumulative five percent of its annual GDP on climate change mitigation over the coming decade.²⁷ Overall public spending in the region however is at much lower levels than in advanced economies, ranging between approximately 10.8 percent in Ethiopia and 27.5 percent in Rwanda.²⁸ In addition, Ethiopia and Kenya are respectively in debt distress or face great risk thereof.²⁹

Overall, governments are advancing the shift to zero-emission vehicles in the five countries. Ecosystem support measures, coupled by ambitious climate targets and private-sector interest, are driving a promising and thriving uptake of electric vehicles in these countries. In contrast to Kenya, Uganda, and Tanzania, where private sector efforts are largely driving the shift, Rwanda and Ethiopia would appear to have predominantly government-led initiatives in the form of enhanced incentives and ICE phase-out regulations.

²⁴ FDR Ethiopia. (2025), Republic of Kenya. (2025), Republic of Rwanda. (2025), Republic of Uganda (2022)

²⁵ FDR Ethiopia. (2023) & (2025)

²⁶ BloombergNEF. (2024)

²⁷ FDR Ethiopia. (2025)

²⁸ IMF. (2023)

²⁹ IMF. (2025)

Funding needs and commitments for climate change mitigation Table 2				
Country	Estimated economy-wide spending needs on climate change mitigation (in USD)	Pledged domestic spending on climate change mitigation relative to GDP		
Ethiopia	66.35 bn 2025–2035 77.5% conditional	5.2% of 2022-GDP, cumulative over 2025–2035		
Kenya 🏥	17.73 bn 2020–2030 79% conditional 22.5 bn 2031–2035 81% conditional	0.3% of 2020-GDP, cumulative over 2020–2030 0.8% of 2023-GDP, cumulative over 2031–2035		
Rwanda	5 bn 2025–2035 89% conditional incl. 418 mn e-mobility conditional	3.1% of 2024-GDP, cumulative over 2025–2035		
Tanzania 🖊	160 bn 2021–2050 on energy-related GHG emissions – not distinguished by conditionality	Not specified		
Uganda ===	10.3 bn 2022–2030 85% conditional	0.3% of 2022-GDP, cumulative over 2022–2030 e-mobility: 1.74 bn* cumulative 2023-2028		
Agora Verkehrsv *unclear addition	vende (2025) Source: see annex nality			

2.4 Ambition in e-mobility targets is promising

Uganda, Ethiopia and Rwanda have adopted ambitious national EV policies and strategies; Kenya and Tanzania are currently consulting on their drafts. Uganda has set the most comprehensive strategy, covering all vehicle segments with a time-specific 100 percent EV mandate, in line with the 2021 Zero Emission Vehicle (ZEV) declaration, which commits signatory countries to making new sales of car and vans zero-emission by 2040.30 By 2030, the aim is to achieve a 30 percent share of EVs in new vehicle sales. In the capital region, the government aims to pass a 100 percent electric mandate for motorcycles as early as 2026 (see Table 3). By 2040, Uganda aims to make electric mobility account for 12.5 percent of GDP, create over 500,000 green jobs, and localise 65 percent of the e-mobility value chain, measures which are expected to achieve a more than 25 percent reduction in transport-based emissions. The strategy proposes a set of policy instruments, including in particular fiscal support measures, across the EV value chain. Key elements include tax exemptions for

R&D, reduced or exempted import duties on components and parts, and tax breaks for EV industry actors. These actions underscore Uganda's ambition to position itself as a regional manufacturing hub for EVs. The country intends to secure an estimated USD 1.74 billion dollars in funding to implement the strategy, which is projected to yield USD 15 billion in annual revenues and 2 MtCO $_2$ e savings from road transport by 2030. Uganda aims to reach 3,500 public charging stations across the country by 2040, with at least one station available within a 50 km radius. Further, Uganda aims to reach a total of 10,000 fast charging units by 2040. $^{\rm 31}$

In 2024, Ethiopia banned all imports of internal combustion engine light-duty vehicles, which in the absence of domestic vehicle manufacturing amounts to a 100 percent EV mandate. The transition in Ethiopia is supported by its low motorisation rates. Ethiopia has taken an unprecedented approach to scaling electric mobility adoption, driven by a relatively small vehicle fleet and a high share of renewable electricity generation. In 2011, the government enacted its Climate Resilient Green Economy Strategy to "introduce stricter fuel efficiency standards for passenger and cargo transportation and

Uganda Science, Technology & Innovation Secretariat.
 (2023).

³¹ Ibid.

promote the purchase of hybrid and electric vehicles to counter the low efficiency of the existing vehicle fleet". In the recently adopted Electric Vehicle Implementation Strategy, Ethiopia resolved to establish by 2030 a network of 2,226 charging stations, with half to be located in the country's capital and economic centre Addis Ababa. The strategy marks a leap in ambition compared with the previous target, adopted in 2023, which for 2030 called for a mere 10 percent increase in the country's charging infrastructure (one that numbered less than 50 stations in 2024, according to a senior official at the Ministry of Transport and Logistics) Transport and Logistics.

Kenya is considered an early adopter of electric mobility in Africa. At the end of 2025, the country is about to adopt a comprehensive EV target. As East Africa's largest vehicle market, its EV policy will be a decisive indicator for the region. Kenya plans to build 700 charging stations

- 32 Federal Democratic Republic of Ethiopia Environmental Protection Authority. (2011).
- 33 Ministry of Transport and Logistics. (2025).
- 34 Assefa, S. & Dosunmu, D. (2024).
- 35 Ethiopia's Long-Term Low Emission and Climate Resilient Development Strategy. (2023).

in urban areas and 300 along major highways as part of its Bottom–Up Economic Transformation Plan 2022–2027. Furthermore, in 2023 Kenya developed Electric Vehicle Charging and Battery Swapping Infrastructure Guidelines to facilitate the expansion of Kenya's charging infrastructure for both private and commercial use. 36 Rwanda adopted an EV strategy in 2021. 37 In 2025, it took a further decisive step by announcing that it would no longer licence ICE motorbikes for public transport in the capital city of Kigali, affecting one–quarter of the country's total motorbike fleet. 38 Rwanda is also in process of developing a master plan for EV charging infrastructure, with the aim of having a charging option available every 50 kilometres or less across the country's road network. 39

Tanzania is the only country analysed that has not set an EV target to date. In 2021, the country prioritised transport as a key sector in its NDC and committed itself to promoting renewables in transport as a path towards

- 36 EPRA 2023
- 37 Rwanda Ministry of Infrastructure. (2021).
- 38 Republic of Rwanda. (2021).
- 39 Germain Nsanzimana. (2024).

E-mobility targets Table 3

Country	All segments	2-/3-Wheelers	Buses	Cars
Ethiopia	439,000 EVs by 2030 (2024) 500,000 EVs by 2033 (2025)	-	48,555 electric buses by 2030 (2020)	148,000 electric cars by 2030 (2020)
Kenya (100% ZEV in new registrations by 2050 (provisional 2025)	-	1,000 electric buses by 2028 (2023)	5% ZEV in registrations by 2025 (2020)*
Rwanda	-	70% electric share in motorbike fleet by 2035 (2022) 2,000 electric motor- bikes with smart charging stations by 2035 (2025)	20% of electric share in fleet by 2030 (2022)	-
Tanzania 🖊	No	targets yet, first EV poli	cy under development	
Uganda ===	_	100% electric share in fleet by 2030 (2023)	100% electric share in fleet by 2030 (2023)	100% electric share in sales by 2040 (2023)

Agora Verkehrswende (2025) | Source: see annex. In parentheses: year in which the target was first announced. *on track to be achieved

reducing emissions. In 2023, the country began developing its National Framework for Deploying and Scaling up Electric-Mobility. The final EV policy framework and national strategy is expected to include provisions for charging infrastructure. To date, the country has yet to issue a national roll-out target. As part of the of the Mission 300 initiative, Tanzania aims to bring electricity to 75 percent of the population by 2030.⁴⁰

2.5 Despite high renewable shares, charging infrastructure development is lagging

All five countries benefit from a high share of renewables in power generation. More than half of power generation in all countries but Tanzania already comes from renewable sources (see Table 4). Electricity prices are extremely low in Ethiopia. In Kenya, by contrast, electricity prices are high relative to the African median of 13.1 ct/kWh for residential use and 12.4 ct/kWh for business. As fuel prices are high and ICE vehicles have a much lower well-to-wheel efficiency, energy costs per kilometre are far lower in the region for EVs than for ICEs (see Table 5).

The impacts that result from insufficient charging-in-frastructure density are difficult to estimate due to the lack of systematic and comprehensive data collection on new installations. Expanded data collection and analysis regarding charging infrastructure are needed to facilitate targeted deployment. Apart from Addis Ababa and Kigali (where the public sector has made significant efforts to install public charging stations), major cities such as Nairobi and Kampala are focusing on the private-sector deployment of charging infrastructure for commercial use. In Nairobi, where a significant share of Kenya's some 300 charging stations are located, the majority of stations are swapping stations for commercial operators. 42

- 41 Africa E-Mobility Alliance. (2024).
- 42 Electric Mobility Association of Kenya (EMAK). (2025).

High renewable shares mean favourable conditions for e-mobility

Table 4

Country	Share of renewables in power generation	Main source	Residential electricity rates (in USD)	Business electricity rates (in USD)
Ethiopia 💮	100%	Hydro and wind	0.5 ct/kWh	1.1 ct/kWh
Kenya	88%	Geothermal, hydro, solar and wind	22.1 ct/kWh	17.4 ct/kWh
Rwanda	52%	Hydro and solar	17.8 ct/kWh	6.6 ct/kWh
Tanzania 🖊	30%	Hydro and solar	9.1 ct/kWh	9.3 ct/kWh
Uganda 🕓	97%	Hydro and solar	18.0 ct/kWh	12.6 ct/kWh

Agora Verkehrswende (2025) | Source: GlobalPetrolPrices.com (no date), IEA (no date). Electricity rates 2023–2025 average. Median electricity rates calculated based on data available for 32 African countries: 13 ct/kWh residential; 12 ct/kWh business.

below African median above African median close to African median

One major roadblock to EV adoption in the region is the lack of publicly accessible charging infrastructure. 41

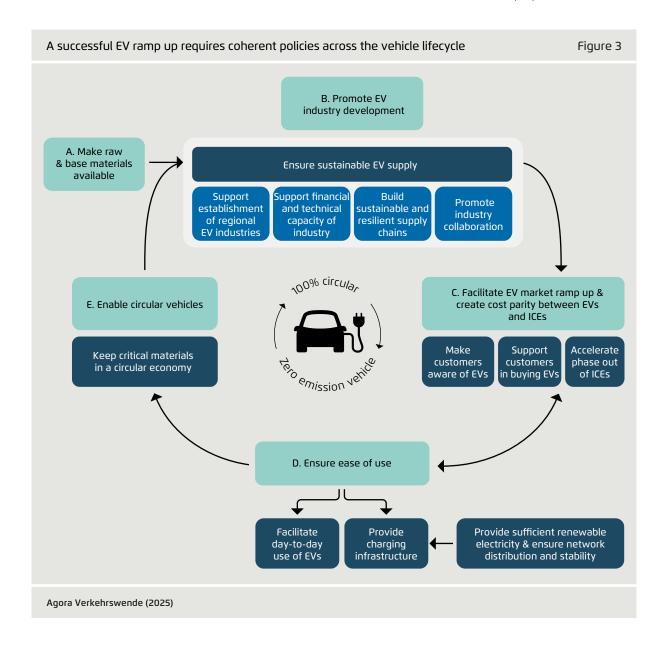
⁴⁰ National Energy Compact for United Republic of Tanzania. (2025).

Charging an electric vehicle is significantly cheaper than filling up a gasoline car in all five countries

Table 5

Country	Petrol costs per 100 km in passenger car (in USD)	Electricity costs per 100 km in passenger car (in USD)
Ethiopia \$7.70		\$0.12
Kenya	\$12.81	\$3.06
Rwanda	\$11.60	\$1.89
Tanzania 🖊	\$10.10	\$1.43
Uganda ===	\$12.98	\$2.37

Agora Verkehrswende (2025) | Source: Agora Verkehrswende 2025. Assumed energy consumption per 100 km: 9.0l/15.5 kWh


3 | Prospective developments in EV policy

This section is organised as follows: 3.1 provides an overview of the EV policy assessment framework; section 3.2 discusses the assessment results; and section 3.3 provides a summary of the findings as well as suggestions for improving future EV policies in East Africa and in other African countries.

3.1 EV policy assessment framework

For a comprehensive understanding of EV policies and associated growth potential, Agora Verkehrswende has developed a framework for assessing electric mobility policies in relation to international best practice. ⁴³ This assessment framework serves as a tool for identifying potential gaps in the future development of EV policies. Specifically, it analyses the challenges frequently encountered by governments when implementing policy across the entire EV lifecycle. The assessment framework covers five categories, as illustrated in Figure 3 and explained in detail below. A mix of policy instruments is

43 Agora Verkehrswende, International Council on Clean Transportation (ICCT), India, and Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ), 2025

suggested in each category. The instruments comprise four main types: regulatory, fiscal, facilitative, and soft measures.

Category A: Make raw and base materials available.

Establishing a sustainable EV industry is dependent on the availability and reliable supply of raw materials for battery and electric motor production. Policymakers play a crucial role in ensuring material availability by implementing strategies that both enhance supply and manage demand. In countries with significant raw material deposits, governments can support the expansion of local mining and processing industries. By contrast, nations lacking sufficient reserves must rely on imports. In these cases, diversification of supply sources is critical for avoiding overdependence on a limited number of suppliers. Key measures to secure raw materials include aligning EV industry needs and upstream mining activities, forming raw material partnerships and trade agreements, and reducing reliance on new critical raw materials in the value chain.

Category B: Development of regional EV automotive industries and supply chains. Leveraging regional economies of scale, strengthening EV manufacturing capactities through support to industry, and ensuring carbon-neutral supply chains are the key areas addressed in this category. In countries with legacy automotive industries and significant vehicle production, industry transformation is essential for maintaining competitiveness. By contrast, emerging automotive markets such as those found in most African countries will focus on building new EV industries and establishing supportive supply chains. The challenges and respective measures can be divided into four main fields:

- a. support the establishment of regional EV industries;
- b. support industry financial and technical capacity;
- c. build sustainable and resilient supply chains; and
- d. promote collaboration and partnerships in industry.

Category C: Facilitate EV market ramp-up and create cost parity between EVs and ICEs. Supporting the ramp-up of the EV market requires increasing consumer awareness and providing financial support to accommodate higher upfront costs, at least until the market reaches maturity. At the same time, it is important to curb the appeal of ICE vehicles. Encouraging EV adoption is as important as ensuring technical readiness, since

the final decision lies with individual consumers. Three key areas of policy are essential to drive this transition: financial incentives for EV purchase; measures to phase out ICE vehicles; and broader support measures, such as public awareness campaigns. Categories B and C are closely related. Policies that discourage the use of ICE vehicles, such as $\rm CO_2$ taxes, can be used to fund EV incentives, creating a balanced push–pull dynamic. Company car taxation is a particularly effective tool in countries with large corporate fleets.

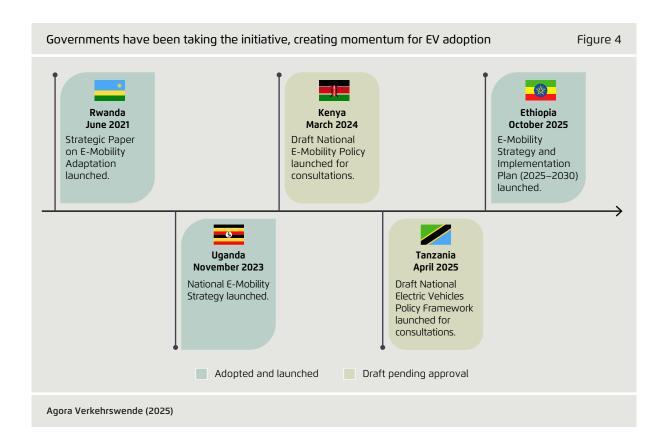
Category D: Ensure ease of use. The use phase of EVs is a critical stage that requires targeted policy support. Key challenges include unfamiliar charging routines for users and the complex setup and grid integration of charging infrastructure. Government support is important for establishing enabling frameworks and providing initial subsidies, while long-term investments and operations are typically led by private actors. The availability and integration of renewable energy is essential to ensure that EVs operation is nearly carbon neutral. Beyond ensuring charging infrastructure availability, the convenience of everyday EV use can be enhanced through measures such as the permission to use dedicated parking or lanes. Policy support for this phase can be grouped into three main dimensions:

- a. provide charging infrastructure;
- b. provide sufficient renewable energy and ensure power network distribution and stability; and
- c. facilitate day-to-day life with EVs through measures that make EVs more convenient, such as preferential access to low emission zones, dedicated parking, and access to bus lanes

Category E: Enable circular vehicles. Electric vehicle batteries contain valuable and scarce materials including lithium, cobalt, and nickel, making their recycling both environmentally and economically important. However, major challenges exist due to limited recycling infrastructure and relatively low quantities of used lithium-ion batteries, which makes this type of recycling impractical. Other challenges include inadequate collection networks, a lack of dedicated recycling facilities, and stringent safety requirements to avoid battery-related fire risks. Reusing materials from used batteries not only conserves finite resources and reduces reliance on mining but also cuts emissions, making end-of-life recycling essential for both sustainability and economic efficiency. Governments can

promote a circular economy for EVs and their components with targeted policy, including measures to support the development of innovative business models that enable circular systems, incentives for end-of-life recycling, and mandated minimum levels of recycled content in new EVs. Establishing efficient recycling infrastructure, clearly defining recycling responsibilities among stakeholders, and setting robust standards for safety and environmental protection are essential for encouraging sustainable resource use and reducing the need for new raw materials.

3.2 Assessing East African EV policies


For the purpose of our assessment, it is important to first describe the policies of the five focus countries at the current stages of their development, adoption, and implementation. The first dedicated electric mobility policy in East Africa was launched by Rwanda in 2021. This was followed by Uganda in 2023 and by Ethiopia in October 2025. Kenya and Tanzania have draft policies that are under consideration.

Outcomes:

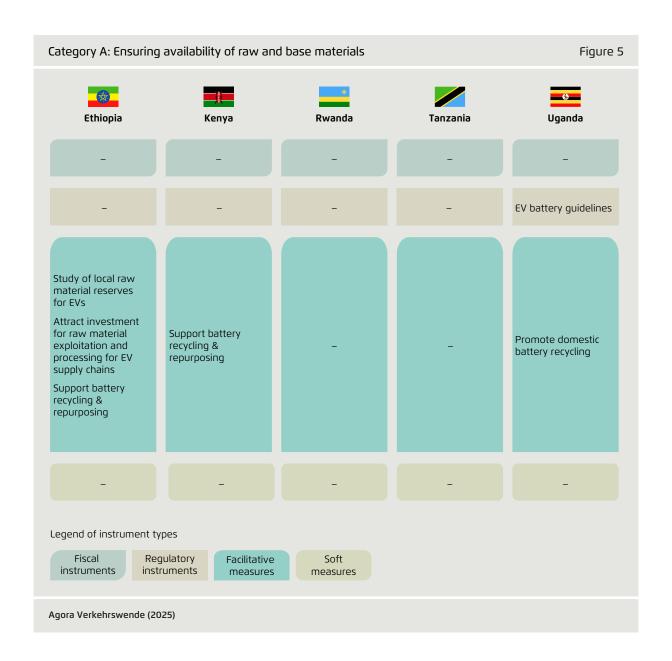
 Category A – Ensuring availability of raw and base materials

Except for Ethiopia, the five countries have not directly prioritised the availability of raw materials for the

EV sector. Ethiopia intends to conduct a study of local raw material reserves, specifically lithium, to establish downstream linkages to the supply chain. It also plans to facilitate matchmaking programmes for component manufacturers, implicitly supporting domestic material utilisation. By contrast, three of the four remaining countries in this analysis address this challenge in an indirect fashion. Rwanda's strategy does not mention the availability of raw materials as a priority but it does focus on local manufacturing. Tanzania, Uganda, and Kenya have prioritised measures to strengthen recycling and repurposing capacities, which indirectly support raw material availability by "closing the materials loop". Among the focus countries, the most comprehensively mapped reserves for lithium, cobalt, and graphite are

found in Tanzania and Rwanda.⁴⁴ Tanzania has the world's 6th largest graphite reserves, estimated at 17 million tonnes.⁴⁵ Rwanda has recently reported lithium and rare earths discoveries⁴⁶; Ethiopia and Kenya are at early stages of mineral exploration; and Uganda is advancing early-stage exploration for lithium, cobalt, graphite, tin, and rare earths.

While the existence of high raw material reserves is promising, there are limited mining operations in these countries and no processing/refining capacities. This could delay the feasibility of localising downstream production over the coming years and decades. Beyond raw material for battery production, EV manufacturing requires automotive grade steel and copper to produce the vehicle body and wiring. In some countries such as Kenya, only copper is locally available. At present, Kenya has the biggest steel industry in the region. It mostly supplies the construction sector, while local automotive assemblers need steel sheets for welding the vehicle frames of e-buses. 47 Tanzania is the most advanced in copper mining and processing. It recently launched a modern plant to boost local value creation in industrial and automotive applications.48


Category A is closely related to enabling circular vehicles (Category E) as battery circularity is essential to ensure the sustainable management of raw materials needed for the production of EVs and components. Figure 5 shows the policy instruments prioritised for category A in the focus countries to support the availability of raw materials for the EV industry.

Policy considerations for ensuring availability of raw and base materials

Access to refined raw materials is a prerequisite for a robust and competitive EV industry. At present, limited mining production and a lack of processing/refining capacity are barriers to ensuring the availability of raw material for domestic EV production. In the East African context, EV policy that is attuned to raw material needs would exhibit some of the following characteristics.

- 44 Africa Minerals Strategy Group. (no date).
- 45 Tanzaniainvest.(2024).
- 46 Battery Metals Africa. (2025).
- 47 Africon. (2023).
- 48 Argus Media. (2025).

- 1. Coherence between raw material and EV policies, including coordination with upstream mining activities. Greater integration of raw material considerations into future EV policies could help establish clearer connections between the mining sector and EV manufacturing. Indeed, coherence between policy frameworks for mining, vehicle and parts manufacturing, and electric mobility could improve the strategic positioning of the EV sector. One possible measure is to introduce minimum local content requirements for EV component production in line with the African Continental Free Trade Area (AfCFTA) Rules of Origin procedures, which are currently under negotiation. Another promising area of endeavour is to coordinate upstream and downstream actors in the mining and EV sectors to better align interests and streamline investment (e.g. with partnerships based on off-take agreements).
- 2. Regional and international partnerships for mineral production and processing. Given the financial, technological, and institutional demands associated with raw material extraction and processing, regional collaboration has gained increasing attention.. Bilateral agreements already exist - for example, Tanzania's cooperation with South Korea on critical raw materials and the EU's agreement with Rwanda on raw mineral value chain development.⁴⁹ However, joint approaches that leverage collective bargaining power may improve the attractiveness of investments while mitigating individual risk. Prominent examples include the Lobito Corridor partnership between the United States, the Democratic Republic of Congo (DRC), Zambia, and Angola on critical raw minerals beneficiation, and the Memorandum of Understanding between Morocco, the DRC, and Zambia to develop shared EV battery value chains. Future EV value chains will likely be international and include the country-specific production of specialised components. Pooling resources to set up shared raw material processing hubs can generate economies of scale and de-risk large scale investments. A regional platform that tracks raw mineral reserves and aligns refining locations with production clusters could help to ensure greater efficiency. The African Union's Green Minerals Strategy, which prioritises electric mobility, provides a relevant overarching framework for such initiatives.

2. Category B – Promoting regional EV automotive industry and associated supply chains

Among the existing policies foreseen by each country, this category has the most policy instruments. This reflects the strong linkages to industrial policies that focus on vehicle manufacturing as an important base for the EV automotive industry.

Direct fiscal support measures such as dedicated funds, financing instruments, subsidies, and tax exemptions are prioritised in all of the five countries. Tanzania plans to create a dedicated government fund to facilitate the establishment of EV manufacturing and assembly lines, an intervention that directly addresses the high upfront capital needs and credit costs associated with industrial scaling in emerging markets. The country also aimed to implement a zero to 44 percent tax reduction for electric four-wheelers and e-buses in the 2023/24 financial year, but it is unclear whether this has been implemented. In addition, the policy foresees targeted incentives for local manufacturers, including tax breaks and subsidies, designed to stimulate domestic investment and lower the production costs of EVs. Tanzania's 2023

finance bill removed taxes for e-motorcycles.⁵⁰ Ethiopia's electric vehicle implementation strategy also prioritises targeted financial incentives such as tax exemptions, preferential loans, and performance-based subsidies, which aim to lower entry barriers for local assemblers and attract foreign direct investment (FDI).

Kenya's draft EV policy prioritises targeted fiscal incentives including exemptions on import duty, VAT, and excise for EV parts and locally assembled vehicles as well as the creation of a Special Operating Framework (SOF) to attract investment in domestic EV manufacturing for both the domestic market and regional export. Uganda's National E-Mobility Strategy has earmarked a suite of manufacturing incentives, including tax exemptions and concessions specifically tailored to support EV production and component assembly. Uganda has been building capacities to establish a local EV automotive industry since the government established the Kiira Vehicle Plant in partnership with the state funded Makere University in 2011. This paved the way for the establishment of Kiira Motors Corporation (KMC) in 2014, co-owned by the Ugandan government (96 percent) and Makere University (4 percent), to assemble and manufacture EVs locally. This led to Africa's first domestically produced hybrid electric vehicle, the Kiira EV.51 Uganda's strategy also foresees tax exemptions for e-mobility research and development. By contrast, Rwanda's electric mobility strategy only offers special corporate tax regimes for companies engaged in the manufacturing and assembly of electric vehicles.

EV mandates and ZEV targets are a standard regulatory policy instrument. EV mandates compel the industry to produce a specified number or percentage of electric vehicles as part of their total output. By contrast, EV or zero-emission vehicle (ZEV) targets are high-level policy ambitions set to signal market development goals in the sector. All of the policies include some form of EV target or mandate. Ethiopia and Uganda both prioritise EV targets in their policies; Uganda goes further by including EV mandates, but does not mention specific targets. Kenya and Rwanda have specific ZEV targets. Kenya's policy also includes plans to implement ZEV sales

targets/investment requirements for automakers and assemblers to qualify for government incentives.

The focus countries have a similar approach to soft measures. Policy instruments supporting technical and vocational education and training (TVET), curriculum development, and establishing institutions and platforms for collaboration are prioritised in all policies. Tanzania's approach is aimed at enhancing the technical skills and human capital necessary to support a future EV value chain, from manufacturing to after-sales service. In the case of Ethiopia, human capital development features prominently through curriculum reforms in universities and TVET institutions, including the creation of practical training frameworks and Centres of Excellence. Kenya has also emphasised skills development and R&D, with plans to integrate EV-focused curricula in TVETs and universities, certify technicians, and support innovation in battery and charging technologies. The country's draft policy aims to offer targeted incentives and employment programmes for women, youths, and persons living with disabilities (PLWDs). Uganda's electric mobility strategy also includes capacity building measures to facilitate technology transfer, battery R&D, and skills development in EV design, maintenance, and repair, all of which are key building blocks for the EV automotive industry.

Facilitative instruments are also foreseen, including dedicated organisations to drive progress and improve existing processes in the sector. Kenya's draft EV policy strategy plans the formation of a high-level Electric Mobility Steering Committee under the Office of the President, signalling the country's political commitment while also ensuring cross-sectoral alignment among ministries, departments, and county-level government. Ethiopia also has a strong emphasis on EV value chain integration to build linkages between suppliers and buyers and to facilitate technology transfer through publicprivate innovation platforms, incubation programmes, and industrial clustering. This strategy aims to establish EV industrial parks and technology hubs to consolidate infrastructure, logistics, and R&D capabilities. Uganda is also prioritising the licensing of EV garages and training centres, the certification of downstream e-mobility operations, and the standardisation of EV components.

⁵⁰ Mwangakala, A. (2025).

⁵¹ Kiira Motors. (no date).

		=		•
Ethiopia	Kenya	Rwanda	Tanzania	Uganda
Tax/import duty exemptions, performance-based incentives, innovation grants, EV manufacturing finance	Tax/import duty incentives for EV components, special operating framework for incentives, stamp duty reduction, tax breaks for domestic EV manufacturing	Corporate income tax breaks for EV manufacturing, tax exemptions, import incentives	Tax incentives for 4-wheelers/e-buses, EV manufacturing fund, tax breaks for domestic manufac- turing	Tax exemptions, concessions for EV manufacturing, R&D income tax exemption
Ban ICE vehicle imports and establish long-term exit strategy for ICE vehicles	EV safety regulations, local content requirements, training mandates	-	-	EV mandates, licensing, standards and certification for EVs
Establish automo- tive-sector develop- ment policy, enable EV investments, streamline port processes and clearance, establish EV value chain alliance, promote EV industrial and technology parks, cluster EV mainte- nance centres	E-mobility steering committee, commission EV demand studies, fast track import of EV parts, women/youth/PLWD programmes, e-mobility employment programs	-	-	Enable domestic EV and battery industry
EV targets, vocational training centres, curriculum reforms, centre of excellence for EV training	Multi-segment ZEV targets, e-mobility curriculum in TVETs, R&D promotion for EVs, certification programmes	ZEV targets	Capacity building initiatives	EV targets, EV public transport pilots, EV skills development
_egend of instrument ty	rpes			
-	gulatory Facilitative measures			

Policy considerations for promoting local EV production and associated supply chains.

All of the assessed policies show a strong commitment to the development of domestic EV industries. While most instruments prioritise this category, numerous untapped opportunities remain for the long-term planning of fiscal incentives, strengthening of regional integration, expansion of technical capacity, and development of resilient, low-carbon supply chains. In the East African context, promising policy approaches for promoting the local EV industry would exhibit the following characteristics:

1. Regional cooperation for EV industry development and competitive supply chains. The EV complete-knocked-policies assessed mostly prioritise measures to help industry scale from semi-knockeddown and complete-knocked-down assembly operations, with the longer-term goal of achieving full manufacturing capacity. But harmonising trade and industrial policies across the focus countries would help national EV industries to expand at the regional level, which could bring numerous benefits, including higher foreign direct investment, opportunities for technology transfer, greater economies of scale, and frictionless cross-border trade in EVs and components. For example, a shared East Africa Community (EAC) EV policy framework could support the development of cross-national supply chains and incentivise companies to scale across borders without incurring duplicate compliance costs. The African Continental Free Trade Area (AfCFTA) presents an opportunity to strengthen such a framework through the adoption of Rules of Origin regulations, which would facilitate the removal of barriers to trade in EVs and components between African countries. Establishing robust EV supply chains requires measures to lower the cost of manufacturing EV components across the region; this is necessary to ensure price competitiveness with imported fully assembled EVs and used ICE vehicles. Beyond the advantages of regional integration, which are relevant for building supply chains, another way that this challenge can be addressed is to develop local clusters in specialized industries. For example, Kenya and Ethiopia have relatively stronger automotive assembly bases, while Tanzania and Uganda have access to critical raw materials and lower-cost labour.

By aligning their complementary national advantages, the focus countries could establish integrated EV supply clusters that specialise in complementary components such as battery cells, component assembly, and electronics integration. This clustering would allow for shared infrastructure, such as industrial parks, logistics hubs, and R&D centres, which would encourage economies of scale while lowering unit production costs. As part of the effort to develop regional supply chains, sustainability and resilience are important for reducing the CO₂ footprint of manufacturing while also building resilience to external shocks. For policymakers to ensure that due consideration to sustaina-

bility and resilience, various measures are necessary, including the creation of incentives for tracking and reducing emissions in supply chains, a reliance on clean electricity in EV production, and measures to promote supplier diversification. On a regional level, one promising approach is to facilitate industry partnerships across the entire EV value chain.

Dedicated fiscal strategies sustained over the medium to long term to support EV industry growth. To

foster a competitive EV sector, short-term incentives are not enough. Medium-to-long term fiscal support strategies are important for attracting investment, lowering the cost of capital for private-sector investors, and building confidence among local manufacturers. Such strategies may include dedicated funding streams, subsidies for the local production of EVs and components, and preferential financing instruments that extend beyond the constraints of annual treasury budget cycles. International experience demonstrates the effectiveness of such an approach: India's FAME I and FAME II programmes provided sustained, multi-year support through a combination of subsidies, infrastructure development, and demand-side incentives. Similarly, the Electric Mobility Association of Kenya (EMAK), in its recent white paper, has argued for Kenya to adopt a comparable framework, underscoring the importance of predictable government support in scaling up EV adoption and industry development. By embedding EV policies within medium to long-term economic planning, governments can ensure stability, continuity, and sustained sector growth.

Category C – Facilitating EV market ramp-up and cost parity with ICEs

ICE vehicle phase-out regulations, tax exemptions, and public awareness initiatives are the most common instruments prioritised in this category.

Regulatory instruments are mostly aimed at phasing out internal combustion engine (ICE) vehicles and creating an enabling environment for EV uptake across the focus countries. Ethiopia, for example, expanded its import 2024 ban on old and new ICE vehicles to include semi-knocked-down (SKD) and completely-knocked-down (CKD) ICE vehicle kits in

July 2025. 52 In its EV strategy, the country foresees the development of a national vehicle scrappage policy as a long-term strategy to systematically retire ICE vehicles. The remaining focus countries are also prioritising the strengthening of ICE vehicle import regulations. While the East Africa Community (EAC) agreed to adopt the Euro 4/IV Equivalent Vehicle Emission Standards in 2022, there are varying degrees of enforcement and restrictions on used ICE vehicle imports. Accordingly, national EV policies must emphasise the need to tighten and modernise these measures. For instance, Kenya and Rwanda have prioritised the introduction of vehicle emissions standards. Tanzania's draft policy foresees the implementation of Low- or No-Emission Zones to reduce high-emission vehicle access in urban areas. Rwanda's strategy plans tighter age limits for ICE vehicle imports to curb older and more polluting vehicle inflows. Similarly, Uganda's policy also foresees a five-year periodic review process for used vehicle imports regulations to gradually limit ICE vehicle imports.

In terms of fiscal measures, countries mostly prioritise tax reductions and exemptions and foresee the continuation of these instruments. The four EAC member countries (minus Ethiopia) have already agreed on a Common External Tariff (CET) for the uniform adoption of imports from non-member states. In 2022, EAC implemented a revised CET with a maximum rate of 35 percent to promote local manufacturing and industrialisation.53 Kenya's first major fiscal incentive to boost EV uptake was introduced in 2019 as part of its Finance Bill through a reduction in the excise duty fee for all battery electric vehicles (BEVs) from 20 to 10 percent.⁵⁴ Since then, the annual tax reductions have varied from 0 to 16 percent (specifically, between 2020 and 2024).55 This year, the government announced tax exemptions on the import of EVs and components.⁵⁶ Its draft EV policy foresees continued import duties, excise duties, and VAT exemptions on EV parts for a specified period and the implementation of a regulatory framework for EV asset financing. It also aims to facilitate adoption through targeted financing products for women, youths, and persons with

disabilities. In 2021, Rwanda introduced a set of fiscal incentives including a preferential corporate income tax rate of 15 percent for manufacturing and assembling companies, reduced power rates for charging stations (at the industrial price level), and non-fiscal support by means of zero-rent land for charging infrastructure. ⁵⁷ In its EV strategy, Rwanda also calls for VAT exemptions and the waiving of import duties on EVs, spare parts, batteries, and charging station equipment. In addition, reduced off-peak electricity rates to lower charging costs is being called for to make EV use more affordable. Rwanda further plans to offer free commercial EV licensing and to enforce carbon taxes to discourage polluting vehicles. It is not clear whether some of these measures have already been implemented.

Tanzania first introduced excise duty exemptions limited to electric buses and electric four-wheelers in its 2023/24 Finance Act. Tanzania's fiscal measures include subsidised bank loans, proposals to abolish or reduce import tariffs on EVs in the short term, and discounted electricity rates to cut running costs, along with financial support for retrofitting older ICE vehicles. Tanzania's policy also foresees gradually increasing import taxes on second-hand ICE vehicles and diesel buses. In 2024, Uganda announced exemptions on stamp duties, income taxes, and excise duties for companies manufacturing EVs, batteries or charging equipment while also employing at least 80 percent domestic workers.⁵⁸ Uganda's EV strategy has earmarked a generous incentive package with zero VAT and withholding tax on the sale of EVs produced domestically, no income tax on R&D expenses, and tax holidays for manufacturers. The country is also using disincentives such as higher VAT rates, import duties, and environmental levies on ICE vehicles.

In 2022 Ethiopia announced tax reforms to encourage investment in EV production as well as electric vehicle imports, including exceptions from excise taxes, VAT, and tax surcharges for imported EV passenger cars and those assembled or manufactured domestically. The country's EV strategy foresees CKD EVs to be fully exempt from customs duties and taxes and SKD EVs are planned to be assessed with a five percent customs duty, significantly lowering import costs, with additional subsidies/tax

⁵² Remeredzai J. K. (2025).

⁵³ East Africa Community (EAC). (2022).

⁵⁴ Sheehan, C., & Green, T. (2023).

⁵⁵ Electric Mobility Association of Kenya (EMAK). (2024).

⁵⁶ Andersen. (2025).

⁷⁷ Rwanda Ministry of Infrastructure. (2021).

⁵⁸ CISL. (2022).

credits for EV purchase to further drive demand. It also foresees revised public procurement rules to prioritise locally manufactured EVs with minimum local content requirement and includes simplified EV registration and licensing as well as exemptions from road use charges. Ethiopia and Tanzania's policies also foresee financial incentives for the retrofitting old ICE vehicles and Ethiopia is planning to grant special loans to users to address the EV affordability gap.

Facilitative measures receive less policy emphasis, while soft measures receive more. Rwanda's strategy prioritises the offering of green license plates for EVs. In January 2025, the country announced that only electric motorcycles will be registered for commercial public transport use in the capital Kigali. Tanzania's policy foresees reserve parking for EVs. It also recognizes that low EV awareness remains a barrier and plans to implement public awareness campaigns to build confidence in the technology and encourage adoption. Kenya's draft policy emphasises national awareness programmes and knowledge-sharing initiatives to create public awareness in addition to measures such as unique license plates for EVs. Ethiopia's strategy includes awareness campaigns, exhibitions, and consumer information efforts to educate the public and build confidence in EV technology. Uganda's electric mobility policy envisages an EV awareness roadmap and promotional measures targeting early adopters such as corporations, with the aim of creating demonstration effects and accelerating market development.

Policy considerations for facilitating EV market ramp-up and cost parity with ICEs

The examined policies in the focus countries already include strong measures to increase the share of EVs while disincentivising ICE use. In the East African context, promising policy approaches in this area would exhibit the following characteristics:

1. Fiscal incentives for the electrification of public, especially informal, transport. The electrification of public transport can be promoted with targeted fiscal incentives, particularly for two and three-wheelers and minibuses, which account for most urban trips in East African cities. These modes not only provide affordable mobility for low and middle-income households but also represent the largest share of emissions from

road transport. International experience has shown the effectiveness of such an approach: under India's FAME II scheme, two and three-wheelers lead in EV adoption rates and emissions reductions. Prioritising these high-use segments promises to maximise both environmental and socio-economic benefits. Targeted subsidies, concessional financing, and tax incentives for commercial EV operators, especially those serving low-income and peri-urban communities, can accelerate fleet turnover, reduce operating costs, and improve accessibility. Over time, this focus can deliver meaningful reductions in urban air pollution and greenhouse gas emissions, while strengthening the business case for wider EV adoption across the transport sector.

2. EV mandates for public and corporate fleets.

EV mandates for public and corporate fleets are important for ensuring guaranteed demand and for creating demonstration effects. Governments can take the lead by electrifying public service vehicles, particularly those with high mileage in urban settings, while mandating that departments of government at the national and local levels procure a certain percentage of EVs when operating vehicle fleets. However, it is important to note that most buses in East Africa are not owned or operated by the government. Accordingly, incentivising corporate actors to electrify their fleets is a sensible measure. This can be achieved through tax deductions, preferential procurement schemes, and access to low-interest loans. Ethiopia, Kenya, and Uganda already foresee regulatory instruments and public procurement mandates, which could serve as building blocks for broader fleet electrification strategies. Policies targeting the company car segment offer another high-leverage opportunity. Company fleets often dominate new vehicle registrations and have higher turnover rates than individual owners, which could contribute to a growing used EV market. Incentivising small and mid-size EVs for corporate fleets through differentiated taxation or leasing incentives can indirectly benefit lower-income households as these vehicles enter the second-hand market. Another opportunity lies in the vehicle fleets operated by government offices and municipal service companies. Governments are some of the countries' largest fleet owners. Replacing these fleets with EVs could serve as a test case and raise public awareness, encouraging other sectors to follow suit.

		-		
Ethiopia	Kenya	Rwanda	Tanzania	Uganda
Develop EV insurance, financial EV incentives, incentive package for retrofitting, loans for EV users	Dedicated financing and insurance for EVs in public transport, import/VAT duty and registration fee waiver, subsidies for high capacity EVs, low-interest loans, affordable EV finance (women, youths, PLWDs)	Carbon tax on ICE vehicles, EV import duty and VAT exemptions, reduced off-peak rates for EV charging, company withholding tax exemption, free registration licenses for EVs	EV 4-wheeler/E-bus tax incentives, incentives for EV purchase/retrofitting, reduced import tariffs, purchase subsidies	EV incentives (subsidies, concessions); ICE disincentives (VAT, pollution taxes)
EV standards & homologation rules, EV regulations (registration, licensing, road user charges, special licence plates), EV priority in public procurement	Mandate EVs in government procurement, regulatory framework for EV financing, framework for EV-based mass transport, review vehicle emission standards, ICE-to-EV transition framework, special EV license plates	ICE emission standards enforce- ment, vehicle import age limits, preferred gov. procurement of EVs, special EV license plates	-	Review used vehicle import rules
-	Promote EV knowledge sharing, commission study on e-mobility impacts, road levy fund, alternative road financing models	-	-	-
Public awareness and consumer campaigns, monitor capacity development, EV demonstration projects	Public awareness programmes	-	Public awareness campaigns	EV awareness roadmap, EV promotion (early adopters)
Legend of instrument ty				
	gulatory Facilitative measures			

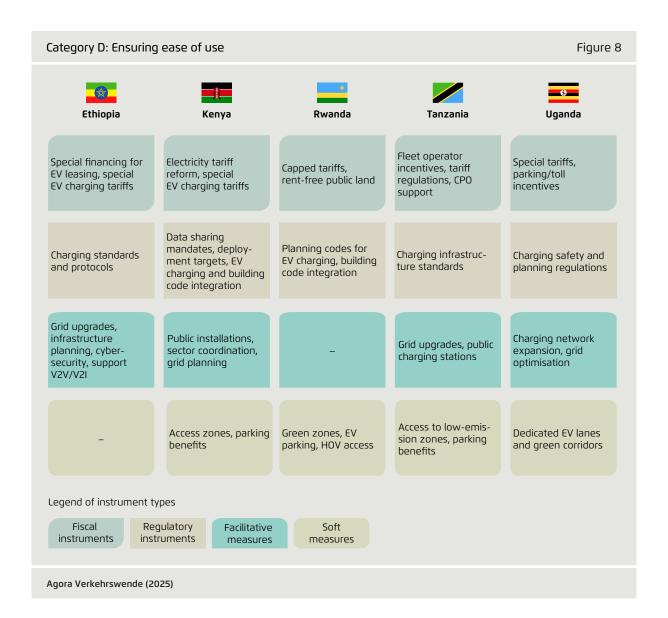
3. Regulations that disincentivise ICE vehicles, particularly the import of used ICEs. Formalising low and zero-emission zones in urban centres is a promising

strategic tool for reducing the attractiveness of ICE vehicles while ramping up demand for EVs. A bonus—malus system can also serve as revenue source, given

the current lack of resources for funding EV subsidies. For example, higher fees collected from polluting ICE vehicles can be channelled into subsidy programmes, supporting EV fleet acquisition for public transport. This approach encourages behavioural change while also supporting financial sustainability. In this connection, discouraging the import of used ICE vehicles is a sensible measure. This can be achieved by adopting stricter vehicle emissions standards and/or import requirements. The import of used ICE vehicles remains a major barrier to comprehensive fleet renewal in many African countries. At the same time, it is also important to consider the issues of socioeconomic equity that arise from stricter rules on used ICE vehicles, as restrictions to used vehicle imports have a regressive impact on low incomes. Tax rules that significantly increase their cost without providing alternatives may prevent a segment of society from accessing mobility while also endangering livelihoods. Ethiopia's 2025 expansion of its ICE vehicle import ban to include ICE components has set a new precedent. Stronger vehicle emission standards, restrictions on the registration of used ICE vehicles, and disincentives on the purchase of old ICE vehicles can reduce the appeal of used ICE vehicles.

4. Category D - Ensuring ease of use

To ensure and facilitate ease of EV use, East African countries have prioritised several fiscal instruments. All


the countries plan to provide fiscal incentives in the form of reduced power rates. Ethiopia's strategy also foresees the introduction of leasing schemes to support investment in EV infrastructure as well as a dedicated power supply to charging stations. In January 2025, Ethiopia issued a directive containing a regulatory framework for EV charging systems which mostly deals with licensing for charging stations, charging rates, security, and power supply.⁵⁹ Meanwhile, Rwanda's strategy also stands out because it prioritises rent-free government land for installing charging stations. Tanzania plans to create financial incentives for fleet operators installing renewable energy systems and for charge point operators and local businesses investing in EV charging infrastructure. In terms of regulatory instruments, the policies mainly foresee infrastructure targets, planning code standards,

and safety rules. In Ethiopia, Tanzania, and Uganda, current strategies prioritise instruments for the development of technical standards, safety protocols, and interoperability to ensure consistency and compatibility across charging networks. Kenya's draft policy stands out because it includes mandates for data sharing to guide infrastructure planning, national targets for EV charging deployment, and requirements for public charging station interoperability. Rwanda's and Uganda's strategies also prioritise the integration of EV charging infrastructure into broader spatial planning by embedding provisions within city planning regulations and reviewing building guidelines. Ethiopia's EV implementation strategy envisages a network of 2,230 charging stations across the country, with 1,176 in Addis Ababa. Countries are focusing on their specific policy maturity and infrastructure needs.

A diverse range of facilitative instruments and soft policy measures are also foreseen. In its EV strategy, Ethiopia emphasises grid integration, reliable electricity access, urban planning for charging networks, and cybersecurity. Kenya also aims to align its policies to ensure coordination across the energy and transport sectors. Tanzania's and Uganda's policies prioritise investment in national grid upgrades and public charging infrastructure. Complementing these facilitative instruments, soft measures are envisioned to directly support user convenience. Rwanda and Tanzania foresee preferential treatment for EVs in the domain public parking, access to high-occupancy vehicle lanes, and low-emission zones, while Uganda plans to implement green routes and dedicated lanes for EVs. These policy measures will support ease of use and ensure that EVs are convenient to operate, not least due to easily accessible public charging infrastructure

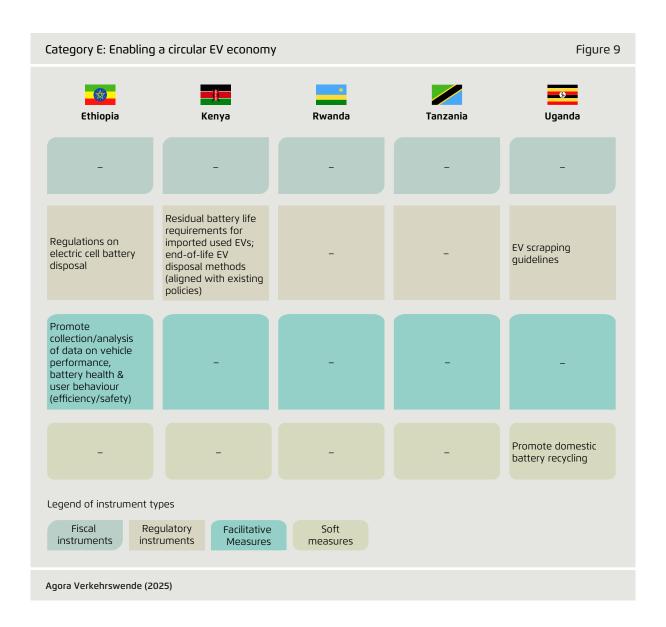
Policy considerations for ensuring ease of use

1. In the East African context, promising policy approaches in this area would exhibit the following characteristics: Measures to support power-grid readiness and renewables integration. As the EV market matures, the rising demand for energy from charging infrastructure, particularly during peak hours, will place additional pressure on grid stability. Ethiopia, Kenya, and Tanzania have already begun investing in grid upgrades and renewable generation

to prepare for this shift. Ethiopia recently inaugurated the Great Renaissance Dam with an installed maximum electricity production capacity of 5,510 MW, while Kenya continues to strengthen its transmission network and to maintain one of the world's highest shares of renewable power at over 90 percent. Tanzania is also investing in grid modernisation, including large-scale solar plant development. Regional interconnections, such as the Kenya-Tanzania and Ethiopia-Kenya transmission lines, are also enhancing grid reliability and the supply of balancing energy across borders. To ensure grid readiness, a promising approach is to combine infrastructure upgrades with demand management measures and improved insti-

tutional coordination. Possible sub-measures in this area include: implementing time-of-use tariffs, off-peak incentives, and smart charging systems to shift load away from peak hours; prioritising grid modernisation by reinforcing transmission and distribution grids; upgrading substations and transformers; establishing control centres; and promoting distributed renewables development in combination with energy storage solutions. Equally important is regulatory and institutional coordination, which ensures that energy utilities, grid operators, transport ministries, and urban planners work together so that the EV charging infrastructure rollout aligns with grid capacity, land use, and urban development plans.

2. Development of master plans for EV charging networks. Numerous advantages can be obtained from developing Master plans to guide the rollout of EV charging infrastructure. Ideally, these plans should define long-term national and regional coverage goals, outline spatial distribution strategies (such as urban versus rural: commercial versus residential), and set clear targets for charger types and the role of public and private investors. Effective planning should be backed by realistic implementation timelines and informed by transport demand, grid capacity, and urban growth patterns. To ensure coordinated and forward-looking deployment, one can also establish national charging infrastructure centres or coordination hubs responsible for overseeing rollout, monitoring progress, and guiding investment. Such institutions can ensure spatially optimised and equitable grids as well as consistency across provinces, cities, and utilities. In this regard, embedding inter-ministerial collaboration, particularly between the transport, energy, and housing sectors, is important for preventing fragmented planning and aligning infrastructure expansion with grid and urban development priorities.


5. Category E – Enabling a circular EV economy

Despite its importance, only three of the five focus countries have explicitly prioritised policy measures for **circularity in the EV sector.** Uganda's strategy contains scrapping guidelines and frameworks for EV battery recycling and prioritises the establishment of domestic recycling infrastructure. Kenya's draft EV policy proposes standards for residual battery life in imported vehicles and supports local battery recycling and repurposing initiatives. Ethiopia's strategy also envisions end-of-life battery regulations and the development of a robust recycling infrastructure. While Tanzania and Rwanda do not explicitly prioritise measures for EV specific circularity, Rwanda's national e-waste policy and its operational e-waste recycling facility show that existing strategies and assets could be leveraged for EV battery and component recycling in the future. 60

Policy considerations for enabling a circular EV economy

The focus countries plan to leverage the circular economy not only for environmental benefits, but also as a key industrial strategy to stimulate domestic economic activity in other sectors, such as electronic waste management. However, integrating circularity into national EV strategies and industrial policies can help to reduce demand for new raw materials in the EV value chain. Such an approach aligns with the Continental Circular Economy Action Plan (CEAP) for Africa (2024–2034) and the initiatives of the African Circular Economy Alliance (ACEA), which aim to keep resources in use for as long as possible, recover maximum value, and minimise waste. In the East African context, promising policy approaches in this area would exhibit the following characteristics:

1. National battery take-back schemes to incentivise investment in EV battery recycling systems. Battery take-back schemes require digital tools to track battery origins, composition, usage, and to ensure safe recycling and traceability. In this connection, there is also a need to conduct awareness campaigns to support public and private sector actors in piloting circular business models for battery leasing, refurbishment, and materials recovery. Indeed, raising awareness among fleet operators and consumers about end-of-life EV battery management and recycling options is crucial for a circular EV economy. As countries begin to explore opportunities in battery recycling, the adoption of mandatory Extended Producer Responsibility (EPR) schemes or the like requiring EV importers and manufacturers to take back end-of-life batteries could help countries to incentivise investments in EV battery recycling systems. The EU Batteries Regulation (EU 2023/1542) can serve as a model: it requires that producers register their operations, finance collection and recycling, report flows, and use battery passports for traceability. The EU will phase in binding performance targets. These include a 65–70 percent recycling efficiency rate for lithium-ion by 2030 and material recovery levels of up to 95 percent for cobalt, nickel, copper, and lead by 2031. In addition, the EU Batteries Regulation's minimum recycled-content requirements are set to begin at 16 percent for cobalt, 6 percent for lithium, and 6 percent for nickel in 2031 to increase demand

for secondary raw materials and to stimulate the domestic EV battery recycling markets.

2. Measures to increase domestic EV battery recycling and incentivise market uptake. As the sector matures, incentives will be required to ensure the establishment of used EV battery collection networks, dismantling facilities, and recycling plants. Once EPR systems are established and include lithium—ion batteries, potential incentives can include targeted grants or tax credits tied to performance against used EV battery recovery targets and tiered EPR fees that reward battery designs optimised for safe removal and recycling. A certified logistics system with trained

carriers, approved packaging, and reporting protocols would help to ensure safe transport. On the demand side, mandatory recycled-content requirements and preferential treatment in government procurement can accelerate the uptake of secondary materials.

3.3 Summary of prospective policies

Our assessment of EV policies in Ethiopia, Kenya, Rwanda, Tanzania, and Uganda identifies several potential strategic priorities for strengthening national and regional EV industries. Securing and processing critical raw materials for EV production is a key step that requires investment in local beneficiation, expanded recycling capacities, and diversified trade partnerships across the focus countries. At the same time, building a robust manufacturing base will depend on regional industrial clustering, skills development, greater regional integration, and countries' specialising in different parts of the EV value chain. While the focus countries now have local semi-knocked-down and completeknocked-down EV assembly industries, leapfrogging to full domestic EV manufacturing requires financial and technical support for industry, for adjacent sectors including energy and logistics, and for harmonised policies across countries to leverage economies of scale and build regional value chains.

On the demand side, targeted incentives for priority segments such as two and three-wheelers and minibuses for public transport – alongside policies phasing out ICE vehicles through constantly improved vehicle standards, and low-emission zones - are key considerations. Kenya, Rwanda, and Uganda have implemented tax exemptions and reductions, while Ethiopia has gone further to ban all ICE vehicle imports. Moving forward, scaling electric mobility across the five countries and on the continent will require charging infrastructure planning and investment. Planned measures such as Ethiopia's EV charging directives, Rwanda's provision of rent-free land for charging stations, and Kenya's EV charging interoperability standards are promising approaches. The countries considered in this analysis have already implemented many complementary measures, including raising public awareness in addition to measures to support the integration of renewable energy into national grids. Embedding circularity through battery recycling, take-back schemes, and digital tracking is essential for the long-term resilience of the sector. Several measures have been identified for enabling the circularity of EVs, including Uganda's scrapping guidelines and Kenya's residual battery standards. To ensure the circularity of EV industries in African countries, these measures must evolve into continent-wide frameworks aligned with

the Continental Circular Economy Action Plan (CEAP 2024–2034); they must also include necessary enforcement mechanisms.

The success of policies implemented to accelerate the uptake of electric mobility will depend in part on broader policy conditions and frameworks. As electric mobility spans various sectors, including transport, energy, infrastructure, and industry, the implementation of EV policies requires a coordinated, multi-stakeholder approach. Lack of coordination amongst key government ministries and stakeholders could lead to duplicated efforts and wasted resources. National coordination platforms are necessary to secure buy-in from all sectors, to ensure alignment between existing policies and stakeholder interests, to monitor the policy implementation and progress, and to support governments in steering the sector. Ethiopia, Kenya, and Uganda have explicitly outlined the role to be played by their national coordination platforms. Kenya plans to establish an Electric Mobility Steering Committee under the Presidency, while Ethiopia and Uganda have set up inter-ministerial steering committees to oversee policy implementation (led by the Ministries of Transport and Industry in Ethiopia and by the Office of the President in Uganda). Only Rwanda and Tanzania have yet to address implementation frameworks directly, but they have identified key stakeholders, including the ministries responsible for infrastructure, energy, and transport.

4 | Outlook: advancing regional cooperation and a continental framework for electric mobility

While significant achievements have been made in advancing electric mobility at the national level in Ethiopia, Kenya, Tanzania, Uganda, and Rwanda, further progress will depend in part on the alignment of these strategies within a regionally coordinated and continentally guided policy framework. First, no single country possesses all the critical materials, industrial infrastructure, and technological capacity required to produce electric vehicles and associated inputs on its own. Achieving sufficient production scale will therefore depend on the regional integration of the EV automotive value chain and on country-specific specialisation in key segments such as mineral extraction, battery manufacturing, vehicle assembly, and recycling. Second, a regional strategy for demand aggregation may be crucial for attracting investment, lowering production costs, and creating stable market conditions for industrial development. Such a strategy will require not just harmonised standards and incentives, but also joint investment and a shared vision that transcends borders.

Significant benefits could arise from the regional coordination of national EV policies. Drawing on examples such as the African Green Hydrogen Strategy and Action Plan adopted by the African Union (AU), policymakers could develop a similar coordinated framework for electric mobility. Such a continental EV strategy or charter could guide the development of aligned national policies and facilitate a coordinated approach to the establishment of EV industries in Africa. The African Continental Free

Trade Area (AfCFTA) provides a framework for scaling investment and intra-African trade in EVs, batteries, and other components. It can support continent-wide supply chain integration and facilitate the movement of goods, services, and skilled labour essential to the sector. At the same time, continental initiatives such as the Continental Circular Economy Action Plan (CEAP 2024–2034) offer strategic entry points to build a circular, resource-efficient electric mobility industry while aligning with Africa's broader industrialisation and climate agenda.

Looking ahead, a continentally coordinated electric mobility roadmap anchored in regional implementation platforms and supported by strong political diplomacy may be essential for realising Africa's ambitions in the electric mobility sector. As the continent moves from pilot initiatives to large-scale deployment, a unified strategic direction would help to position Africa not only as an adopter of electric mobility technologies, but also as a key player in the global EV value chain.

5 | References

Africa E-Mobility Alliance (AfEMA). (2024). Building Visibility on Electric Bus Initiatives in Africa - Africa E-Mobility Alliance. URL: https://africaema.org/wp-content/uploads/2025/04/Building-Visibility-on-E-Bus-Initiatives-in-Africa.pdf

Africa Energy Summit. (2025). National Energy Compact for United Republic of Tanzania.

URL: https://thedocs.worldbank.org/en/doc/7d09ddf-2619513d85e489e2620252793-0010012025/original/M300-AES-Compact-Tanzania.pdf

Africa Minerals Group. (2024). Critical Minerals for Energy Transition. URL: https://africamineralsgroup.org/wp-content/uploads/2024/03/Uganda-Critical-Minerals-1.pdf?

Africa Minerals Strategy Group. (no date). Table of Critical Minerals in Africa (By Country). URL: https://africamineralsgroup.org/table-of-critical-minerals-in-africa-by-country/

Africa Policy Research Institute (APRI). (2025). Mapping Africa's Green Mineral Partnerships. URL: https://afripoli.org/mapping-africas-green-mineral-partnerships

African Business. (2024). EV Manufacturing Shows Signs of Promise in Africa. Payton, B. URL: https://african.business/2024/07/trade-investment/ev-manufacturing-shows-signs-of-promise-in-africa

Africon. (2023). The East African Steel Industry.

URL: https://africon.de/wp-content/uploads/2023/12/
africons-first-editorial-publication-2.pdf?utm_
source=perplexity

Agora Verkehrswende, ICCT & GIZ. (2025). Mapping electric vehicle policy for Indian states Case study of Maharashtra STUDY. URL: https://www.agora-verkehrswende.org/fileadmin/Projekte/2024/Indian-EV-Policy-Guidelines/115_Indien_EV_Policy_Guidelines.pdf

Agora Verkehrswende (2025). Fuel Cost Maps for Africa. URL: https://www.agora-verkehrswende.org/publications/fuel-cost-maps-for-africa

Alematehu, D. (2025). City Deploys 100 Electric Buses Strengthening PPP. URL: https://press.et/herald/?p=113106.

Align Ethiopia. (2024). Ethiopian Automotive Market. URL: https://www.alignethiopia.com/ethiopian-automotive-market-insights/.

Andersen. (2025). The Finance Bill - 2025 Economic Impact Analysis. URL: https://ke.andersen.com/wp-content/uploads/2025/05/Sectoral-Economic-Impact-of-Kenyas-Finance-Bill-2025.pdf

TanzaniaInvest. (2024). Graphite in Tanzania: reserves and major projects. URL: https://www.tanzaniainvest.com/graphite

Assefa, S., & Dosunmu, D. (2024). Ethiopians are Struggling to Keep up with the New "EV or Nothing" Policy. URL: https://restofworld.org/2024/ethiopia-gas-carban-ev-chargers/.

Battery Metals Africa. (2025). Aterian and Rio Tinto Discover High-Grade Lithium in Rwanda's Southern Province. URL; https://batterymetalsafrica.com/aterian-and-rio-tinto-discover-high-grade-lithium-in-rwandas-southern-province/?

BBC. (2019). Increasing Car Ownership in Ethiopia. URL: https://www.bbc.com/news/av/business-50426159.

Beuter, P. (2025). Mapping Africa's Green Mineral Partnerships. URL: https://afripoli.org/mapping-africas-green-mineral-partnerships

Black, A., Makundi, B., & McLennan, T. (2017). Africa's Automotive Industry: Potential and Challenges. AFDB; URL: https://www.afdb.org/fileadmin/uploads/afdb/Documents/Publications/WPS_No_282_Africa%E2%80%99s_Automotive_Industry_Potential_and_Challenges.pdf?lang=en&utm

BloombergNEF. (2024). Lithium-Ion Battery Pack
Prices See Largest Drop Since 2017, Falling to \$115 per
Kilowatt-Hour. URL: https://about.bnef.com/insights/
commodities/lithium-ion-battery-pack-prices-seelargest-drop-since-2017-falling-to-115-per-kilowatthour-bloombergnef/.

BMI Country Risk and Industry Analysis. (2025).

Morocco EV Profile: Investment In Local EV Supply Chain to Support Long-Term EV Adoption.

URL: https://www.fitchsolutions.com/bmi/autos/moroc-co-ev-profile-investment-local-ev-supply-chain-support-long-term-ev-adoption-02-06-2025

Changing Transport. (2024). Driving Rwanda's Green Future — An event-overview of the Electric Mobility Forum Kigali. Changing Transport. URL: https://changing-transport.org/driving-rwandas-green-future/

CISL. (2022). Pathways to E-Mobility in Uganda an Evidence-Based Approach to Transition. University of Cambridge Institute for Sustainability Leadership. URL: https://www.cisl.cam.ac.uk/files/pathways_to_e-mobility_transition_in_uganda.pdf

Crowe, M., Lee, K., Bernard, Y. (2025). Evaluation Of Real-World Vehicle Emissions in Kampala, Uganda. The Real Urban Emissions (TRUE) Initiative.

URL: https://www.unep.org/technical-highlight/kampala-faces-severe-vehicle-pollution-crisis-reveals-first-study-its-kind

Deloitte. (2016). Africa Automotive Insight Navigating the African Automotive Sector: Ethiopia, Kenya and Nigeria. URL: https://digitaldealership.com/wp-content/uploads/2021/03/ZA_Deloitte-Africa-automotive-insights-Ethiopia-Kenya-Nigeria-Apr16-2017.pdf

Federal Democratic Republic of Ethiopia. (2023).

Ethiopia's Long Term Low Emission and Climate Resilient Development Strategy (2020–2050). URL: https://unfccc.int/sites/default/files/resource/ETHIOPIA_%20 LONG%20TERM%20LOW%20EMISSION%20AND%20 CLIMATE%20RESILIENT%20DEVELOPMENT%20 STRATEGY.pdf

Dror, M. B. & Vahle, T. (2023). Why Used Car Exports to Africa Are a Development Opportunity.

URL: https://www.weforum.org/stories/2023/01/
used-car-exports-to-africa-development-opportunity-davos-2023/

East Africa Community (EAC). (2022). EAC Ministers adopt 35% as the EAC CET 4th Band. URL: https://www.eac.int/press-releases/157-trade/2424-eac-ministers-adopt-35-as-the-eac-cet-4th-band

Electric Mobility Association of Kenya (EMAK). (2024).

Electrifying Kenya's Transportation Sector – Fiscal Benefits and Policy Measures to Promote Electric Mobility.

URL: https://e-mobilitykenya.org/downloads/#

Electric Mobility Association of Kenya (EMAK). (2025).

Electrifying Kenya's Transportation Sector – Fiscal Benefits and Policy Measures to Promote Electric Mobility.

URL: https://e-mobilitykenya.org/downloads/

Elhiraika, A. (2025). Developing a Thriving E-Vehicles Value Chain In Africa | Africa Renewal. URL: https://africarenewal.un.org/en/magazine/develop-

ing-thriving-e-vehicles-value-chain-africa. Accessed

25/08/2025

Energy and Petroleum Regulatory Authority (EPRA) Kenya. (2023). Energy and Petroleum Statistics Report Bi-Annual. URL: https://www.epra.go.ke/sites/default/

Bi-Annual. URL: https://www.epra.go.ke/sites/default/files/2025-02/EPRA%20Statistics%20Report%20-%20 January%20-%20December%202023.pdf

Federal Democratic Republic of Ethiopia. (2023). Ethiopia's Long-Term Low Emission and Climate Resilient Development Strategy 2020–2050.

Federal Democratic Republic of Ethiopia – Ministry of Transport and Logistics, Ministry of Industry. (2025). Electric Vehicle Implementation Strategy (2025 – 2029).

Federal Democratic Republic of Ethiopia Environmental Protection Authority. (2011). Ethiopia's Climate-Resilient Green Economy Strategy. URL: https://www.ldc-climate.org/wp-content/uploads/2018/01/crge-strategy.pdf

Germain Nsanzimana. (2024). Rwanda Develops Master Plan for EV Charging Stations. URL: https://www.new-times.co.rw/article/22007/news/rwanda/rwanda-develops-master-plan-for-ev-charging-stations.

GIZ. (2023). Exploration of Market Potentials in Battery Recycling and Refurbishment in Africa. In Transformative Mobility. URL: https://transformative-mobility.org/wp-content/uploads/2024/07/Battery_Recycling-Op-portunities-in-Africa.pdf

GlobalPetrolPrices.com. (no date). *Electricity Prices.* URL: https://www.globalpetrolprices.com/electric-ity_prices/

GlobalPetrolPrices.com. (no date). Gasoline Prices.
URL: https://www.globalpetrolprices.com/gasoline_prices/

Gompertz, D. (2021). Africa's Bumpy Road to an Electric Vehicle Future. URL: https://www.e3g.org/news/africas-bumpy-road-to-an-electric-vehicle-future/.

Gorham, R., Hartmann, O., Qiu, Y., Bose, D., Kamau, H., Akumu, J., Kaenzig, R., Krishnan, R., Kelly, A., & Kamakaté, F. (2017). Motorisation Management in Ethiopia. URL: https://documents1.worldbank.org/curated/en/099548004042231428/pdf/IDU04df83d-400f006042930968e01ccdab67341f.pdf

Government of Kenya. (2023). National Climate Change Action Plan (Kenya) 2023–2027. URL: https://emsi.co.ke/wp-content/uploads/2024/08/Kenya-NC-CAP-2023-2027-1.pdf

HICGI News Agency. (2023). A New Country Is Set to Join the East African Community. URL: https://hicginewsagency.com/2023/11/14/a-new-country-is-set-to-join-the-east-african-community/?utm.

IEA. (2025). Africa – Countries & Regions. URL: https://www.iea.org/regions/africa.

IEA. (no date). Country Profiles.
URL: https://www.iea.org/regions/africa

IMF. (2023). Government expenditure, percent of GDP. URL: https://www.imf.org/external/datamapper/exp@FPP/USA/FRA/JPN/GBR/SWE/ESP/ITA/ZAF/IND

IMF. (2025). List of LIC DSAs for PRGT-Eligible Countries. URL: https://www.imf.org/external/pubs/ft/dsa/dsalist.pdf

Irechukwu, E. N. (2025). Volkswagen's Localization Strategy: A Case of Rwanda's Automotive Industry and Job Creation. URL: https://doi.org/10.37745/bjmas.2022.04904

ITA. (2024). Ethiopia Automotive EV Market.

URL: https://www.trade.gov/market-intelligence/ethiopia-automotive-ev-market.

ITA. (2025). Ethiopia Automotive: Growing EV Market Opportunities for U.S. Companies.

URL: https://www.trade.gov/market-intelligence/ethiopia-automotive-growing-ev-market-opportunities-us-companies.

Kenya Association of Manufacturers (KAM). (2020).

Automotive Sector Profile KAM. URL: https://kam.co.ke/wp-content/uploads/2021/04/Automotive-sector-profile-2020-1.pdf

Khan, T., Kohli, S., Yang, Z., & Miller, J. (2022). Zero-Emission Vehicle Deployment: Africa. URL: https://theicct.org/wp-content/uploads/2022/04/africa-hvs-zev-deploy-africa-apr22.pdf

Kiira Motors. (no date). URL: https://kiiramotors.com/

Kisembo, G. (2025). *Tanzania Stakes Its Claim as a Critical Minerals Powerhouse.* URL: https://eastafricanminingnews.com/tanzania-stakes-its-claim-as-a-critical-minerals-powerhouse/?

McKinsey Center for Future Mobility. (2019). Making Electric Vehicles Profitable. URL: https://www.mckinsey.com/~/media/McKinsey/Industries/Automotive%20 and%20Assembly/Our%20Insights/Making%20electric%20vehicles%20profitable/Making-electric-vehicles-profitable.pdf

Mckinsey. (2022). Power to move: Accelerating the Electric Transport Transition in Sub-Saharan Africa. URL: https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/pow-er-to-move-accelerating-the-electric-transport-transition-in-sub-saharan-africa.

Miller, J. (2025). Resources Top 5: RareX Taps Iluka in Major Kenyan Partnership to Ride Rare Earths Wave. URL: https://stockhead.com.au/resources/resources-top-5-rarex-taps-iluka-in-major-kenyan-partnership-to-ride-rare-earths-wave/?

Ministry of Water and Energy (MoWE), Ethiopian Electric Power (EEP), Ethiopian Electric Utility (EEU), & Petroleum & Energy Authority (PEA). (2025). Ethiopian Energy Outlook 2025. URL: https://www.ea-energianalyse.dk/wp-content/uploads/2025/06/Ethiopian-Energy-Outlook-2025.pdf

Ministry of Water and Environment. (2022). Updated Nationally Determined Contribution (NDC). The Republic of Uganda. URL: https://unfccc.int/sites/default/files/NDC/2022-09/Updated%20NDC%20_Uganda_2022%20 Final.pdf

Mwangakala, A. (2025). The Finance Act 2023 Marked a Pivotal Shift in Government Thinking. It Swept Away Excise Duty on Many Electric Cars, Motorcycles, and Three-Wheelers, and Waived Several Other Import Charges. URL: https://www.linkedin.com/pulse/tan-zanias-version-electric-vehicle-ev-adoption-ar-nold-mwangakala-6kcue/?trackingId=3j2aAhcduPMD-WIzhp%2BQdew%3D%3D.

Remeredzai J. K. (2025). Ethiopia Updates ICE Vehicle Import Ban To Include Imports of SKD & CKD Kits.

URL: https://cleantechnica.com/2025/06/21/ethiopia-updates-ice-vehicle-import-ban-to-include-imports-of-skd-ckd-kits/.

Republic of Kenya. (2023). National Climate Change
Action Plan (Kenya) 2023–2027. Ministry of Environment, Climate Change and Forestry, Nairobi, Kenya.
URL: https://emsi.co.ke/wp-content/uploads/2024/08/
Kenya-NCCAP-2023-2027-1.pdf

Republic of Rwanda. (2020). Nationally Determined Contribution Updated. URL: https://unfccc.int/sites/default/files/NDC/2022-06/Rwanda_Updated_NDC_May_2020.pdf

Republic of Rwanda. (2021). The Government of Rwanda and UNDP Rwanda Launch a Retrofit Electric Motorcycles Project. URL: https://www.rema.gov.rw/info/details?cHash=ccc78aac4af706b07f2618f92ab-c2904&tx_news_pi1%5Baction%5D=detail&tx_news_pi1%5Bcontroller%5D=News&tx_news_pi1%5B-news%5D=126&utm_source.

Republic of Rwanda. (2022). Supercharging Rwanda's E-mobility Transition (Stockholm 50 factsheets). URL: https://www.environment.gov.rw/index.php?eID=dumpFile&t=f&f=55460&to-ken=6003242e29667513f33c128466ffc760c62d81d8.

Republic of Rwanda. (2024). National Institute of Statistics of Rwanda (NISR), Rwanda Statistical Yearbook 2024. URL: https://www.statistics.gov.rw/statistical-publications/statistical-yearbook/rwanda-statistical-yearbook-2024

Roychowdhury, A., Chattopadhyaya, V., & Chandola, P. (2023). Electric Mobility in Africa: A Unique Opportunity to Leapfrog to Clean Air and Low Carbon Mobility. URL: https://www.cseindia.org/content/downloadreports/11682

Rwanda Ministry of Infrastructure. (2021). Strategic Paper on Electric Mobility Adaption in Rwanda.

URL: https://www.mininfra.gov.rw/fileadmin/user_upload/Mininfra/Publications/Laws_Orders_and_Instructions/Transport/16062021_Strategic_Paper_for_e-mobility_adaptation_in_Rwanda-Final.pdf

Rwanda Utilities Regulatory Authority (RURA). (2022).

Strategic Plan 2022–2027. Rura.rw; Rwanda Utilities Regulatory Authority (RURA). URL: https://www.rura.rw/fileadmin/publication/Strategic_Plan_2022-2027_for_RURA_vision.pdf

Sharp Mugabe. (2019). National E-Mobility Strategy – GCIC Uganda. URL: https://www.gcic.go.ug/national-e-mobility-strategy/

Sheehan, C., & Green, T. (2023). Kenya Charging Forward: A Brief Assessment of Kenya's E-Mobility Policy Landscape and Proposed Changes. URL: https://p4gpartnerships.org/sites/default/files/2023-05/Kenya%20 Charging%20Forward%20Digital%20(1).pdf

SLOCAT. (2025). Africa Regional Overview: Transport, Climate and Sustainability Global Status Report (GSR) – 4th Edition. URL: https://gsr4.slocat.net/.

Thabo Nkosi. (2025). The Growth of EV Sales in Africa: Latest Figures. URL: https://www.ev24.africa/the-growth-of-ev-sales-in-africa-latest-figures/?utm.

Umemoto, Y. (2025). Car Production in Africa: Which Global Brands Are Built Where? URL: https://africabusinesspartners.com/insights-news/insight-3/.

UNEC for Europe. (2024). Passenger Car Rate - Data Portal - United Nations Economic Commission for Europe. URL: https://w3.unece.org/PXWeb/en/CountryRank-ing?IndicatorCode=44. **UNEP.** (2024). Used Vehicles and the Environment: Update and Progress 2024. URL: https://www.unep.org/resources/report/used-vehicles-and-environment-global-overview-used-light-duty-vehicles-flow-scale

World Resource Institute, & Ministry of Transport and Logistics Ethiopia. (2022). National Road Safety Strategy – Second Decade of Action. URL: https://www.rosifs.gov.et/sites/default/files/National%20Road%20Safety%20 Strategy%20English_compressed.pdf

Zirikana, F., Kossakowski, P. (2024). Driving Rwanda's Green Future – Highlights from the Electric Mobility Forum. Changing Transport/GIZ. URL: https://chang-ing-transport.org/driving-rwandas-green-future/

Annex: references for graphs and tables

Figure 2: Motorcycles and imported used cars make up the lion's share of the small but rapidly growing vehicle fleets in East Africa

Ethiopia:

Align Insights (2024). Ethiopian Automotive Market –
A Synopsis of our Survey Result.
https://www.alignethiopia.com/ethiopian-automotive-market-insights/

Kenya:

Kenya National Bureau of Statistics (2025). Economic Survey 2025. https://www.knbs.or.ke/reports/2025-economic-survey/

Rwanda:

 National Institute of Statistics of Rwanda (NISR), 2024: Rwanda Statistical Year Book 2024. https:// www.statistics.gov.rw/statistical-publications/statistical-yearbook/rwanda-statistical-yearbook-2024

Tanzania:

 undisclosed draft document of the Ministry of Transport. Based on Tanzania Ministry of Works and Transport 2021 data

Uganda:

 Uganda Electric Mobility Association (2024). Position Paper: Steering the E-Mobility Transition in Uganda. No data source given.

Table 1: GHG emission reduction targets in transport (and beyond)

Ethiopia:

- Ethiopia's Long-Term Low Emission and Climate Resilient Development Strategy (2020–2050) (2023)
- Federal Democratic Republic of Ethiopia. (2025).
 Ethiopia's Nationally Determined Contribution 3.0 (2025–2035)

Kenya:

- Ministry of Environment, Climate Change and Forestry (2023). National Climate Action Plan (NCCAP) III 2023–2027
- Ministry of Environment and Forestry. (2020).
 Kenya's Updated Nationally Determined Contribution (NDC)

 Ministry of Environment, Climate Change and Forestry. (2025) Kenya's Second Nationally Determined Contribution (2031-2035)

Rwanda:

- Republic of Rwanda (2020). Updated Nationally Determined Contribution
- Republic of Rwanda (2025). Rwanda's Nationally Determined Contribution 3.0

Tanzania:

 The United Republic of Tanzania – Vice President's Office (2021). Nationally Determined Contribution

Uganda:

- The Republic of Uganda Ministry of Water and Environment (2022). Updated Nationally Determined Contribution (NDC)
- Republic of Uganda Sciences, Technology & Innovation Secretariat of the President (2023).
 National E-Mobility Strategy

Table 2: Funding needs and commitments for climate change mitigation

Ethiopia:

 Federal Democratic Republic of Ethiopia (2025).
 Ethiopia's Nationally Determined Contribution 3.0 (2025-2035)

Kenya:

 Ministry of Environment and Forestry (2020). Kenya's Updated Nationally Determined Contribution (NDC) Republic of Kenya Ministry of Climate Change and Forestry (2025). Kenya's Second Nationally Determined Contribution (2031-2025)

Rwanda:

 Republic of Rwanda (2025). Rwanda's 2035 Nationally Determined Contribution 3.0

Tanzania:

 The United Republic of Tanzania – Vice President's Office (2021). Nationally Determined Contribution

Uganda:

- The Republic of Uganda Ministry of Water and Environment (2022). Updated Nationally Determined Contribution (NDC)
 Republic of Uganda Sciences, Technology & Innovation Secretariat of the President (2023).
- GDP Data: World Bank (no date). GDP (current US\$).
 https://data.worldbank.org/indicator/NY.GDP.MKTP.CD

Table 3: E-mobility targets

National E-Mobility Strategy

Ethiopia

- 2020 objective: Transport Sector Ten Years Plan 2020
- 2024 objective and achievement previous target:
 Africa Briefing (24/03/2024). Ethiopia's Electric
 Vehicle Revolution: 439,000 EVs Planned in 10 Years.
 https://africabriefing.com/ethiopias-electric-vehicle-revolution-439000-evs-planned-in-10-years/
- Further Africa (23/01/2025). Ethiopia Drives Towards Electric Mobility: EV Charging Stations Now Mandatory. Eric Gacuruzwa. https://furtherafrica. com/2025/01/23/ethiopia-drives-towards-electric-mobility-ev-charging-stations-now-mandatory/
- 2024 import restriction:
 Le Monde (13/09/2024). Noé Hochet-Bodin. Ethiopia,
 the First Country in the World to Ban the Import of
 Gasoline and Diesel Vehicles. https://www.lemonde.
 fr/en/le-monde-africa/article/2024/09/13/ethiopiathe-first-country-in-the-world-to-ban-the-import-of-gasoline-and-diesel-vehicles_6725856_124.
 html
- 2025 objective:
 Federal Democratic Republic Ethiopia. (2025).
 Ethiopia's Nationally Determined Contribution 3.0 (2025–2035)

Kenya

- 2020 target:
 Kenya Ministry of Energy (2020). Kenya National
 Energy Efficiency and Conservation Strategy, p.37
- Progress on 2020 target:
 1.62 percent registered in 2023, more than five times year-on-year increase of sales, following an almost two-fold increase from 2021 to 2022.

- Kenya Energy and Petroleum Regulatory Authority (EPRA) (2024). Bi-annual Energy and Petroleum Statistics Report – Financial Year 2023/2024
- 2023 bus target:
 Kenya Ministry of Environment, Climate Change and
 Forestry (2023). National Climate Change Action Plan
 2023–2027
- On-going development of new target: undisclosed draft documents

Rwanda

- 2022 motorbike target: Republic of Rwanda (2022). Revised Green Growth and Climate Resilience – National Strategy for Climate Change and Low Carbon Development
- 2025 motorbike target: Republic of Rwanda. (2025). Rwanda's 2035 Nationally Determined Contribution 3.0
- 2022 bus target: Announcement at COP27 by Faustin Munyazikwiye, Deputy Director General Rwanda Environment Management Authority (REMA) at Rwanda lead negotiator, cited by The New Times The New Times (22/11/2022). How Rwanda Will Electrify 20 percent Public Transport Buses by 2030. Michel Nkurunziza. https://www.newtimes.co.rw/ article/2859/news/business/how-rwanda-will-electrify-20-public-transport-buses-by-2030
- 2025 Kigali moto-taxi EV mandate:
 The New Times (04/11/2024). Rwanda to Halt Registration of Petrol Motor-Cycles in 2025. Emmanuel
 Ntirenganya. https://www.newtimes.co.rw/article/21528/news/rwanda/rwanda-to-halt-registration-of-petrol-motor-cycles-in-2025

Tanzania

 On-going development of EV policy: access to undisclosed draft document of the Ministry of Transport

Uganda

2023 target:
 Republic of Uganda Sciences, Technology &
 Innovation Secretariat of the President (2023).
 National E-Mobility Strategy

Publications by Agora Verkehrswende

Africa's Raw Materials for Electric Mobility at a Glance

How abundant raw materials for electric vehicles in Africa create opportunities for domestic development in partnership with Europe

Fuel Cost Maps for Africa

Infographics on the energy cost savings of switching to e-mobility for national budgets and consumers

Policy Levers for Affordable EVs

The total cost of ownership of EVs and combustion engine vehicles and policy design options for effective market uptake

Joining knowledge forces for sustainable transport policies in Africa

An initial stocktake of think tanks, NGOs and academic institutions from across the continent

Chile's path to electromobility

An assessment of policies, progress and prospects

A strong European battery industry for a strong automotive sector

Nine insights for expanding battery production for electric mobility in Germany and Europe

Towards Decarbonising Transport: Chile 2025

A Stocktake on Sectoral Ambition

Scaling Power-to-X Fuels in Transport

A Cross-National Analysis and Policy Toolkit

Towards Decarbonising Transport: South Africa 2025

A Stocktake on Sectoral Ambition

Making affordable electric cars widely available

Making affordable electric cars widely available – options for a subsidy programme for the private car market in Germany that is balanced in terms of industrial policy, climate policy and social Policy

Mapping electric vehicle policy for Indian states

Case study of Maharashtra

Joint venture for the cabinet

Recommendations for inter-departmental climate action in the transport sector as a prelude to competitiveness and social justice

Leapfrogging to Sustainable Transport in Africa

Twelve Insights into the Continent's Sector Transformation

All publications can be found on our website: www.agora-verkehrswende.org

Agora Verkehrswende is a Berlin-based think tank that seeks to promote climate-friendly mobility. Non-partisan and non-profit, it works together with key stakeholders in the fields of politics, business, academia and civil society to decarbonise the transport system. To this end, the think-tank team develops evidence-based policy strategies and recommendations.

Agora Verkehrswende

Anna-Louisa-Karsch-Str. 2 | 10178 Berlin | Germany www.agora-verkehrswende.org info@agora-verkehrswende.de

